Solving hard combinatorial problems by temperature annealing is a classic strategy in computer science [1]. A major question is whether annealing a quantum mechanical kinetic term [2, 3] or a transverse magnetic field Γ can be an efficient strategy. Experimentally this question was studied in an Ising spin glass [4]; an archetype for difficult systems in physics. A quantum first order transition was observed at very low temperatures, as had been previously found in model systems [5, 6]. Here we address several open questions: What is the underlying behavior of the wave functions at the quantum spin glass transition? Is quantum annealing efficient in solving these difficult optimization problems? We thus first solve a simple quantum version of a spin glass model, the Random Energy Model (REM) [7]. Despite its simplicity, it reproduces many properties of mean field field glasses [7] and allows one to model the behavior of a wide variety of phenomena such as the ‘ideal’ glass transition [8] and random heteropolymer folding [9]. The REM also captures aspects of the phenomenology of random satisfiability [10] and is closely related to the random code ensemble in coding theory [11]. All these problems belong to the so-called ‘Random First Order’ (RFO), or ‘one-step replica symmetry breaking’ class. To show that in all of these systems the minimal spectral gap Δ between the ground and first excited states is exponentially small in the size, we set up an instanton calculation that allows one to compute the gap. The minimal spectral gap in turn yields a lower bound $\tau \propto \Delta^{-2}$ [2] on the time needed to find the ground state.

Quantum spin glasses have been investigated over the last thirty years [12] using an elaborate mathematical formalism combining the Replica [13] and the Suzuki-Trotter methods [5, 14] in order to introduce disorder and quantum mechanics. The quantum transition has been found to be first order at low temperature for all RFO models [5, 6, 14]. We show here first that the quantum version of the Random Energy Model (QREM) can be solved analytically using only basic tools of perturbation theory, a derivation whose simplicity provides a detailed understanding of quantum glass transition. The minimal gap Δ is found to be exponentially small in N. Next, we show that this result holds for all RFO models, making quantum annealing an exponentially slow algorithm in those cases.

The QREM Model.— Consider N Pauli spins σ in a transverse field Γ with the Hamiltonian:

$$\mathcal{H}(\{\sigma\}) = E(\{\sigma^z\}) + \Gamma \sum_{i=1}^{N} \sigma_i^z = \mathcal{H}_0 + \Gamma V$$

where $E(\{\sigma^z\})$ is a function that takes 2^N different values for the 2^N configurations of the N spins. These values are taken randomly from a Gaussian distribution of zero mean and variance $N/2$, as in the REM [7]. A concrete implementation is

$$E(\{\sigma^z\}) = \lim_{p \to \infty} \sum_{p=1}^{N} \sum_{i_1,...,i_p} J_{i_1,...,i_p} \sigma_{i_1}^z \cdots \sigma_{i_p}^z,$$

where the $J_{i_1,...,i_p}$ are random Gaussian variables. In the σ^z representation \mathcal{H} is a $2^N \times 2^N$ matrix whose diagonal entries are the 2^N classical energies. The matrix elements of $\mathcal{H}_{\alpha \beta}^0 = E_{\alpha}$ and $\mathcal{H}_{\alpha \beta}^0 = 0$, while $V_{\alpha \beta} = 1$ if α and β are two configurations that differ by a single spin flip and zero otherwise. \mathcal{H} is sparse and can be studied numerically rather efficiently even for large system sizes using Arnoldi and Ritz methods [19].

Two easy limits.— The model is trivially solved in the limit $\Gamma \to 0$ and $\Gamma \to \infty$. For $\Gamma = 0$, we recover the classical REM with N Ising spins and 2^N configurations, each corresponding to an energy level E_{α} [7]. Call $n(E)$ the number of energy levels belonging to the interval $(E, E + dE)$; its average over all realizations is easily computed:

$$n(E) = 2^N P(E) \propto e^{N(\ln 2 - E^2/N^2)} = e^{N s(E/N)},$$

where $s(e) = \ln 2 - e^2$ (with $e = E/N$). There is therefore a critical energy density $e_0 = -\sqrt{\ln 2}$ such that, if $e < e_0$, then with high probability there are no configurations while if $e > e_0$ the entropy density is finite. A transition between these two regimes arises at $1/T_c = \frac{d s(e)}{d e}{|e_0} = 2\sqrt{\ln 2}$ and the thermodynamic behavior follows: i) For $T < T_c$, $f_{REM} = -\sqrt{\ln 2}$ and the system is frozen in its lowest energy states. Only a finite number of levels (and only the ground state at $T = 0$) contribute to the partition sum. The energy gap between them is finite. ii) For $T > T_c$, $f_{REM} = -\frac{1}{T} - T \ln 2$; exponentially many configurations contribute the partition sum.

In the opposite case of very large values of Γ, the REM contribution to the energy can be neglected. In the σ^z basis, we find N independent classical spins in a field Γ; the entropy density is just given by the log of a binomial between $-\Gamma N$.
and $+\Gamma N$ and the free-energy density is $f_{\text{para}} = -T \ln 2 - T \ln (\cosh \Gamma/T)$.

Perturbation theory.— What happens between these two extreme cases? The perhaps surprising answer for the thermodynamics is: *nothing*. At low value of Γ, the free-energy density is that of the classical REM while for larger values it jumps to the quantum paramagnetic (QP) value f_{QP}: a first order transition separates the two different behaviors at the value Γ such that $f_{\text{REM}} = f_{\text{QP}}$ (see central panel of Fig. 1). This can be easily understood using the Rayleigh-Schrödinger perturbation theory [15][20]. Consider the set of eigenvalues E_k and eigenvectors $|k\rangle$ of the unperturbed REM, when $\Gamma = 0$. The series for a given perturbed eigenvalue $E_i(\Gamma)$ reads

$$E_i(\Gamma) = E_i + i\sum_{n=0}^\infty \Gamma V \left(\frac{Q}{E_i - \mathcal{H}_0} (E_i - E_i(\Gamma) + \Gamma V) \right)^n |i\rangle,$$

where the projector $Q = \sum_{k \neq n} |k\rangle \langle k|$ so that

$$E_i(\Gamma) = E_i + \Gamma V i_1 + \sum_{k \neq n} \Gamma^2 V_{ik} V_{ki} + \ldots.$$

(1)

Since $V_{ij} \neq 0$ if and only if i and j are two configurations that differ by a single spin flip, odd order terms do not contribute in Eq. (1) as one requires an even number of flips to come back to the initial configuration in the sums. Noting that $\sum_{k \neq n} |V_{nk}|^2$ reduces to a sum over the N levels connected to E_i by a single spin flip, one obtains, starting from an *extensive eigenvalue* ($E_i = O(N)$), that

$$\sum_{k \neq n} \frac{V_{ik}^2}{E_i(\Gamma) - E_k} = \frac{1}{E_i(\Gamma)} \sum_{k=1}^N (1 + E_k/E_i(\Gamma) + \ldots) = \frac{N}{E_i(\Gamma)} + O\left(\frac{1}{N}\right),$$

(2)

where we have used that the E_k are random and typically of order \sqrt{N}. Higher n^{th} orders are computed in the same spirit and are found to be $O(N^{n/2-1})$. Therefore, to all (finite) orders, we have

$$E_i(\Gamma) = E_i + \frac{N \Gamma^2}{E_i} + O\left(\frac{1}{N}\right).$$

(3)

This analytic result compares well with numerical evaluation of the eigenvalues (left panel of Fig. 1). Note that the energy density of all extensive levels is independent of Γ to leading order in N as are hence $s(e)$ and $f(T)$.

The expansion can also be performed using ΓV as a starting point and \mathcal{H}_0 as a perturbation. Consider the lowest eigenvalue $-\Gamma N$. In the base $|n_i\rangle$ corresponding to the eigenvalues of ΓV, we find

$$E(\Gamma) = -\Gamma N + \langle n | \mathcal{H}_0 | n \rangle + \sum_{k \neq n} \frac{|\langle k | \mathcal{H}_0 | n \rangle|^2}{E(\Gamma) - E_k} + \ldots.$$

The first term gives $\sum_{n=0}^{2N} E_n^{\text{REM}} v_n^2$. Since the energies of the REM are random and uncorrelated with v_i this sums to $O(\sqrt{N}2^{-N/2})$. For the second term, one finds

$$\sum_{k \neq n} \frac{|\langle k | \mathcal{H}_0 | n \rangle|^2}{E(\Gamma) - E_k} = \frac{1}{E(\Gamma)} \sum_{k \neq n} \frac{|\langle k | \mathcal{H}_0 | n \rangle|^2}{1 - E_k/E(\Gamma)}$$

$$\approx \frac{1}{E(\Gamma)} (n | \mathcal{H}_0^2 | n) \approx -\frac{N}{2E(\Gamma)} + O(1).$$

(4)

Subsequent terms are treated similarly and give vanishing corrections so that $E(\Gamma) = -\Gamma N - \frac{1}{2\Gamma} + O(1)$. Again this holds for other states with extensive energies, the only tricky point being the degeneracy of the eigenvalues [21]. For these eigenvalues, the perturbation starting from the large Γ phase gives $E(\Gamma) = E - \frac{1}{2\Gamma} + O(1)$. Again, energy, entropy and free-energy densities are independent of Γ to leading order in N and everything is thus constant on both sides of the transition.

The quantum transition.— This derivation sheds new light on the physics of the transition: The wave function in the QP phase is delocalized over the classical configurations in the σ^z base. The first order transition amounts to a sudden localization of the wave function into an exponential number of classical states for $T > T_c$ and a finite number of frozen states for $T < T_c$ (and to the ground state at $T = 0$).

Focusing on $T = 0$ and on the avoided level crossing near the transition, we compute the gap $\Delta(N)$ as follows: Consider a value of Γ such that for that sample the spin glass (SG) ground state and the quantum paramagnet are degenerate. We lift the degeneracy by diagonalizing \mathcal{H} in the corresponding two-dimensional space

$$\mathcal{H}|\phi\rangle = [E_o] |SG\rangle \langle SG| - \Gamma N |QP\rangle \langle QP|| |\phi\rangle = \lambda |\phi\rangle.$$

(5)

The gap is given by the difference of the eigenvalues, so that

$$\Delta(N, \Gamma)^2 = (\Gamma N - E_o)^2 - 4 \left[-E_o \Gamma N + E_o \Gamma N |SG\rangle \langle QP| \right]^2$$

and at the transition when $\Gamma = -\sqrt{2} \approx E_o/N$, it yields

$$\Delta_{\text{min}}(N) = 2 |E_o|^2 2^{-N/2}$$

(6)

where we have used the fact that $|SG\rangle \langle QP| = 2^{-N/2}$. This agrees well with numerics, even for small values of N (see left panel of Fig. 1). Similar results are known for number partitioning [16].

Generic case and Instanton.— A first order quantum transition being a generic feature in all RFO models, we expect these arguments to hold *qualitatively* in all such models, so that the gap closes exponentially with N, much in the same way that a thermal mean field first order transition implies an exponential activation time and metastability. Indeed, quantum annealing works by tunneling between quantum states but in first order transitions these states are usually “far” from each other. In order to *quantitatively* compute the gap, perturbation theory is of no use in the generic case and we thus now discuss how this can be done using the replica method.

The idea it to use the expansion of the evolution operator and, denoting $\varepsilon = (\langle QP|H|SG\rangle)$, to write

$$\text{Tr} \ e^{-\beta H} = \sum_{k \text{ even}} \frac{1}{k!} \int dt_1 \ldots dt_N e^{-[i\varepsilon_{SG} H_{SG} + i\varepsilon_{QP} H_{QP}]/\beta} \ e^k,$$

(7)
where the system jumps at t_1, \ldots, t_k between the states $|SG\rangle$ and $|QP\rangle$, t_{SG}^f and t_{QP}^f is the total time spent in each. Following the standard strategy [5,6,14], the trace is computed via the Suzuki-Trotter and the replica trick. One obtains an effective replicated free energy as a function of the overlaps $q^{\mu\nu}_{t,t'}$ between the replicas at two (imaginary) times and some corresponding Lagrange multipliers $\tilde{q}_{t,t'}^{\mu\nu}$, for which a particular ansatz must be proposed [5,6]. Eq. (7) tells us that if we find a solution that interpolates between $|SG\rangle$ and $|QP\rangle$ by jumping k times t_1, \ldots, t_k and yields $\ln \text{Tr} [e^{-\beta H}] \sim -t_{SG}^f F_{SG} - t_{QP}^f F_{QP} - kG$, then by simple comparison $\ln \varepsilon \sim G$ leads to $\Delta \sim e^G$. An extensive value of G implies an exponentially small gap and the value of G is thus proportional to the free-energy cost of an interface in a two-time plane. The computation can be done by using a special two-time instanton ansatz as in right panel of Fig. 1. We now refer to the presentation and notation of [14]. We calculate the free energy per spin $f = F/N$ of the replicated systems in the $N \to \infty$ by the saddle-point method. In the one-step replica symmetry ansatz, we divide replicas μ in n/m sets of size m: we denote the parameters $q^{\mu\nu}_{t,t'}$ is i) $q^{d}_{t,t'}$ if $\mu = \nu$ [17], ii) $q_{t,t'}$ if $\mu \neq \nu$ but belong to the same block and zero otherwise. This corresponds to the SG and the QP that have been widely studied [5,6,14]:

$$-eta f = \int dt dt' \left\{-\frac{\beta^2 J^2}{4} (1-m) q^{d}_{t,t'} + \frac{(1-m)}{2} \tilde{q}_{t,t'} q_{t,t'} + \frac{\beta^2 J^2}{4} [q^{d}_{t,t'}]^p - \tilde{q}^{d}_{t,t'} q^{d}_{t,t'} \right\} - W_o. \quad (8)$$

An expression for W_o is given below. We consider a solution corresponding to the low-Γ phase in the interval $(0, t_1)$, (t_2, t_3) that jumps to the high-Γ in the intervals (t_1, t_2), $(t_4, t_5) \ldots$.

As a proof of principle, let us rederive the large-p case. The saddle-point equations imply that for large p either $(q_{t,t'}, \tilde{q}_{t,t'}, \tilde{q}_{t,t'}, \tilde{q}^{d}_{t,t'}) = (1, 1, \infty, \infty)$ or $(q_{t,t'}, \tilde{q}^{d}_{t,t'}, \tilde{q}_{t,t'}, \tilde{q}^{d}_{t,t'}) = (1, 1, 0, 0)$. This implies that the form of the instanton configuration of $\tilde{q}_{t,t'}^{d}$ and $\tilde{q}_{t,t'}$ is the same as the one of $q_{t,t'}$ and $q_{t,t'}^{d}$ but with the values jumping from 0 to ∞. In addition we make the 'static approximation' that assumes that inside each time interval the parameters q^{d} and \tilde{q}^{d} are constant. We conclude that we can write

$$2\tilde{q}^{d}_{t,t'} - \tilde{q}_{t,t'} = r^{d}_{t,t'}, \quad \tilde{q}_{t,t'} = r_{t,t'}, \quad (9)$$

where r_t and $r^{d}_{t,t'}$ are large in the time intervals when the system is in the SG state, and drop to zero when it is not. (The solutions in the literature correspond to a time-independent value of r: large for the glass and small for the QP phase, respectively). Because $\tilde{q}^{d}_{t,t'}, \tilde{q}_{t,t'}$ are either zero or one, we have

$$\int dt dt' \tilde{q}_{t,t'} q_{t,t'} \sim \int dt dt' \tilde{q}_{t,t'} = I^2$$

$$2 \int dt dt' \tilde{q}^{d}_{t,t'} q^{d}_{t,t'} = 2 \int dt dt' \tilde{q}^{d}_{t,t'} = I_d^2 + I^2 \quad (10)$$

with the definitions $I \equiv \int dt r(t)$ and $I_d \equiv \int dt r^d(t)$. We further decouple the replicas in the single-spin term in the usual way [5]:

$$W_o = \ln \text{Tr} \exp \left(-H_{\text{eff}} \right) = -\frac{1}{m} \ln \left\{ \int Dz_2 \left[\int Dz_3 \left(T e^{\int dt' (A(t') \sigma^+ + \beta \Gamma \sigma^-)} \right)^m \right] \right\}, \quad (11)$$

where T denotes time-order (a necessity here because of the time-dependence in the exponent), and $A(t) \equiv (z_3 r^d_{t,t} + z_2 r_{t,t}).$ At low temperatures, the ‘field’ in the x direction βT is strong,
while the field in the z direction $|A(t)|$ is either zero or $|A(t)| > B$. The single quantum spin then switches from being completely polarized along $|z|$ and along $|x|$, in the periods in which $A \neq 0$ and $A = 0$, respectively. The trace in (11) can then be calculated by switching the single-spin basis from $|x\rangle$ to $|z\rangle$. Denoting $t^{SG} = \Theta B$ the time when $q_t = q_t^d = 1$, and $t^{QP} = (1 - \Theta)B$ the rest, the action becomes:

$$-\beta f = \Theta^2 \left\{ -\frac{\beta^2 J^2}{4} (1 - m) + \frac{\beta^2 J^2}{4} \right\} - \frac{1}{2} I_d^2 - \frac{m}{2} I^2 \omega_2 + (1 - \Theta)B \Gamma + (\text{num. of jumps}) \times \ln |\langle x|z\rangle|, \quad (12)$$

where terms $|\langle x|z\rangle|$ come from the change of basis, and:

$$W_z = -\frac{1}{m} \ln \left\{ \int Dz_2 \int Dz_3 e^{i z_2 I + z_3 I_d} \right\}$$

This can be evaluated by the saddle point Θ, a short calculation yields $W_z \sim \frac{1}{2} I_d^2 + \frac{m}{2} I^2 + \ln 2$. Taking a further saddle point with respect to m gives $m = 2\sqrt{2} \beta J$ and thus

$$-\beta f = \Theta \sqrt{2} \ln 2 \frac{\beta J}{2} + (1 - \Theta)B \Gamma + k \times \ln |\langle x|z\rangle|. \quad (13)$$

This is exactly the contribution to $\text{Tr} [e^{-\beta H}]$ of the process with k jumps spending a fraction Θ in the glass state and $(1 - \Theta)$ in the paramagnetic state. We finally have $G = N \ln |\langle x|z\rangle| = -N \ln \ln (2)/2$ and we recover the result of Eq. (6).

In a generic problem, one has to extremize the free energy Θ and from there compute the gap, as a free-energy cost of an interface that is generally non-zero.

Conclusion.— Starting from the Quantum Random Energy Model, we have discussed the quantum glass transition. The gap is exponentially small at the transition. We introduce a method that allows us to show that this result holds for all models of the Random First Order kind; presumably including benchmark problems such as random satisfiability. Our results imply that quantum annealing is exponentially slow at finding the ground state of these random NP-hard problems. Although this seems to contradict recent numerical results [18] the problems considered there were not randomly chosen and are different from what is considered difficult in the computer science literature of random constraint satisfaction problems.

[17] Except our $(q_{\alpha t}^d, q_{\alpha t}^{\mu})$, which are their $(R_{\alpha t}, \tilde{R}_{\alpha t})$.
[20] A similar derivation allows one to solve the model in presence of magnetic field and magnetic bias [19], a particularly important setting in coding theory.
[21] Within each degenerated subspace the perturbation \mathcal{H}_0 acts as a random orthogonal matrix of variance $N^2 - N$. This is tiny and weakly lifts the degeneracy.