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Flow in thin films is highly dependent on the boundary conditions. Here, we study the
capillary levelling of thin bilayer films composed of two immiscible liquids. Specifically,
a stepped polymer layer is placed atop another, flat polymer layer. The Laplace pressure
gradient resulting from the curvature of the step induces flow in both layers, which
dissipates the excess capillary energy stored in the stepped interface. The effect of different
viscosity ratios between the bottom and top layers is investigated. We invoke a long-wave
expansion of the low-Reynolds-number hydrodynamics to model the energy dissipation
due to the coupled viscous flows in the two layers. Good agreement is found between the
experiments and the model. Analysis of the latter further reveals an interesting double
cross-over in time, from Poiseuille flow, to plug flow and finally to Couette flow. The
cross-over time scales depend on the viscosity ratio between the two liquids, allowing for
the dissipation mechanisms to be selected and finely tuned by varying this ratio.

Key words: capillary flows, thin films

1. Introduction

Flow in a thin film is affected by the boundary conditions of the film, especially
when the thickness of the film approaches that of the interfacial layer (Oron, Davis &
Bankoff 1997; Bocquet & Charlaix 2010). As an example, the presence of slippage at a
solid–liquid interface affects flows in thin films as observed in the dewetting dynamics
of thin polymer films (Kargupta, Sharma & Khanna 2004; Fetzer et al. 2005; Münch,
Wagner & Witelski 2005; Bäumchen & Jacobs 2009). The dynamics is more complex
in bilayer or stratified films, because the flow depends on the relative viscosities and
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interfacial energies of the two layers in addition to the interfacial boundary conditions
(Brochard-Wyart, Martin & Redon 1993; Pototsky et al. 2004; Merabia & Bonet Avalos
2008; Jachalski et al. 2014). Liquid–liquid interfaces, in particular those between two
polymers, often exhibit apparent slip (de Gennes 1989; Brochard-Wyart & de Gennes 1990;
de Gennes & Brochard-Wyart 1990), and have been studied with molecular dynamics
simulations (Koplik & Banavar 2006; Razavi, Koplik & Kretzschmar 2014; Poesio,
Damone & Matar 2017) and experiments (Lee et al. 2009; Xu, Zhang & Shi 2016).
Such an effective reduction of friction has important practical implications, e.g. for smart
liquid-impregnated surfaces (Howell 2015; Keiser et al. 2017). The stability and dewetting
of thin multilayer polymer films is also a subject of interest for physicists (Lambooy
et al. 1996; Segalman & Green 1999; Lal et al. 2017; Peschka et al. 2018), and finds
applications in industry e.g. materials manufactured from coextrusion processes (Zhao
& Macosko 2002; Ponting, Hiltner & Baer 2010; Bironeau et al. 2017; Chebil et al.
2018).

Capillary-driven levelling occurs when an excess of interfacial area is relaxed by
smoothing topographical perturbations, such as a thin film with a surface feature: a bump,
a valley, a hole, etc. Typically, the levelling is driven by the surface tension γ of the
liquid–vapour interface. The curvature of the free interface results in a Laplace pressure,
and a gradient in the curvature induces flow, thereby reducing the surface energy of the
system. The flow is mediated by the viscosity η of the liquid. Capillary-driven levelling
is a useful tool for studying fluid flow in nanofilms and can be used to investigate the
boundary conditions (de Gennes, Brochard-Wyart & Quéré 2003). With well-known initial
conditions, capillary-driven levelling has been used to study various interfacial polymeric
properties, such as glass transition anomalies, confinement effects and nanorheology
in thin polymers films (Buck et al. 2004; Fakhraai & Forrest 2008; Yang et al. 2010;
Rognin, Landis & Davoust 2011; Teisseire et al. 2011; Chai et al. 2014). Previous work on
nanorheology in thin films has shown that, in addition to the importance of surface tension
and viscosity, the flow is sensitive to the boundary conditions (Münch et al. 2005; Xu et al.
2011; Jachalski et al. 2014). The capillary-levelling technique was applied to a variety of
geometries and configurations, which range from imprinted nano-patterns (Stillwagon &
Larson 1988; Buck et al. 2004; Rognin et al. 2011; Teisseire et al. 2011), to steps (McGraw,
Jago & Dalnoki-Veress 2011), trenches (Bäumchen et al. 2013), holes (Backholm et al.
2014; Bertin et al. 2020) and inhomogeneous mixtures (McGraw et al. 2013).

In the present work, we focus on the influence of a deformable liquid–liquid interface
between two immiscible polymers by studying the capillary-driven levelling of a stepped
bilayer film. The latter is depicted schematically in figure 1(a). A stepped polymer film is
placed on a flat film of another, immiscible polymer supported on a rigid substrate. The
initial surface perturbation can be described as a Heaviside function, where the vertical
height profile varies abruptly from one thickness to another as the horizontal x-direction
is varied. The system is invariant in the other horizontal direction. During the subsequent
evolution, the height profile h(x, t) can be described as a function of both the horizontal
position x and time t. Furthermore, the dynamics is expected to depend on the relative
viscosities of the bilayer. Indeed, one can expect that, if the viscosity of the bottom flat
film is much higher than that of the top stepped film, then the former is much like a rigid
substrate: the top film can flow like a liquid film on a solid substrate. In contrast, if the
bottom film has a relatively negligible viscosity, then the top film can flow with little
hindrance at the bottom, akin to a freestanding liquid film. For these reasons, it is of value
to consider the two extreme cases of a single film on a solid substrate and a freestanding
film.
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Figure 1. (a) Schematic of the as-prepared sample, with the indicated materials. The upper portion of the
stepped film, the lower portion of the stepped film and the bottom film all have the same thickness h0.
(b) Atomic force microscopy profiles of the liquid–air interface and the liquid–liquid interface. The two scans
are shifted in the vertical direction to reconstruct the actual profile of the sample.

In the case of a thin liquid film on a solid substrate (McGraw et al. 2011, 2012; Salez
et al. 2012a), there is typically a no-slip boundary condition at the solid–liquid interface
and a no-shear-stress boundary condition at the liquid–air interface. Using the lubrication
approximation for Stokes flow, the interface profile follows the thin-film equation (Oron
et al. 1997) with a parabolic Poiseuille velocity profile. In earlier works on stepped films, it
was found that the thin-film equation admits a self-similar solution in the rescaled variable
x/t1/4 (McGraw et al. 2012; Salez et al. 2012a).

In contrast, for a freestanding film, there are no-shear-stress boundary conditions at
each of the two interfaces. As a consequence, the excess surface energy of a symmetric
topographical perturbation must be dissipated through elongational flow, instead of shear
flow, as was found in soap films (Acheson 1990). Within a long-wave approximation, the
flow profile is consistent with plug flow. The interface profile h(x, t) follows a system of
coupled partial differential equations (Erneux & Davis 1993) which admits a self-similar
solution in the rescaled variable x/t1/2 (Ilton et al. 2016). We note that freestanding films
are described by the same equations as that for supported films on slippery substrates with
an infinite slip length, since the absence of friction at the solid–liquid interface implies the
absence of any shear stress at that interface (Münch et al. 2005).

For a thin liquid film placed onto another, immiscible thin liquid film, the flow profile
depends on the viscosity ratio between the two films, as well as on the ratio between the
two relevant interfacial tensions. While the levelling of a liquid film atop a more viscous
liquid is expected to be similar to that of a liquid film atop a solid substrate, the opposite
case of liquid film atop a lower-viscosity liquid is non-trivial and is the primary focus of
the present article. Here, we use experiments and low-Reynolds-number hydrodynamics
in order to investigate the flow in such a geometry. Based on previous works on supported
and freestanding films, we expect the widths of the interfacial perturbations to follow
some combinations of the limiting ∼ t1/4 and ∼ t1/2 relaxation laws. We demonstrate that
the main viscous dissipative mechanism cross-overs in time from being Poiseuille like, to
elongational and then to Couette like, and that this double cross-over is tuneable with the
viscosity ratio.

2. Methods

2.1. Experiments
The sample preparation and experimental protocol follow modified versions of the ones
described in previous works (McGraw et al. 2011; Peschka et al. 2018). Figure 1(a) shows
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a schematic of the sample, with a stepped film of poly(methyl methacrylate) (PMMA)
atop a polystyrene (PS) film supported on a silicon (Si) substrate. PS and PMMA are an
immiscible pair (Tanaka, Takahara & Kajiyama 1996). The thin polymer films are prepared
by spin coating PS or PMMA from solutions in toluene (Fisher Chemical, Optima), onto
1 cm × 1 cm Si wafers (University Wafer) and freshly cleaved mica sheets (Ted Pella,
Inc.), respectively. The PMMA molecular weight is Mw = 56 kg mol−1 (Polymer Source,
Inc., polydispersity index ≤1.08). The PS molecular weights are Mw = 53.3, 183 and
758.9 kg mol−1 (Polymer Source, Inc. and Scientific Polymer Products, Inc., polydispersity
index ≤1.06). After spin coating, all films are annealed at 150 ◦C, i.e. above the glass
transition temperatures of both polymers, for 10 minutes to remove any residual solvent
and to relax the polymer chains. The films of PMMA are then floated from the mica surface
onto a bath of ultra-pure water (18.2 MΩ cm). A floating film of PMMA is transferred off
the water surface onto the PS-coated Si substrate to create a flat bilayer film supported on
Si. The molecular weight of the PMMA is low enough such that the polymer chains are
not highly entangled: a thin film of this polymer easily fractures upon perturbation on the
surface of water, which results in portions with straight edges (Bäumchen et al. 2013). A
second film of PMMA is fractured and transferred onto the flat bilayer, the sharp, fractured
edge thus creating the step (see figure 1a). For each sample studied here, the upper
portion of the PMMA stepped film, the lower portion of the PMMA stepped film, and the
bottom PS film all have the same thickness, h0, within 10 % of each other, as confirmed
with ellipsometry (Accurion, EP3). The thicknesses used in this work are h0 = 100, 180
and 240 nm.

To examine the evolution of the step with time, the samples are annealed above the glass
transition temperature of both polymers (∼100 ◦C), with a temperature controlled stage
(Linkam). The samples are held at the elevated temperature for a given period of time,
during which flow and levelling occur, before being quenched back into the glassy state
at room temperature. Surface profiles of the liquid–air interface are obtained with atomic
force microscopy (AFM, Bruker). For some experiments, the liquid–liquid interface is
exposed by dissolving of the top PMMA layer with a selective solvent (∼67 % acetic acid
and ∼33 % ultra-pure water). This procedure allows for AFM profiles of the liquid–liquid
interface to be measured. Figure 1(b) shows typical AFM profiles of the liquid–air and
liquid–liquid interfaces taken at the same location on the sample. The actual profile of
the whole sample is reconstructed by vertically shifting the AFM profiles according to the
original layer thickness.

The dynamics of capillary-driven levelling depends on two dimensionless numbers: the
viscosity ratio μ = η1/η2 between the bottom (PS, 1) and top (PMMA, 2) layers, and the
interfacial tension ratio Γ = γ1/γ2 between the liquid–liquid and liquid–air interfaces.
The viscosity ratio is varied by changing the molecular weight of the bottom layer, as well
as by changing the annealing temperature; this results in the viscosity ratio varying over
6 orders of magnitude, from μ ≈ 5.3 × 10−5 to μ ≈ 1.4 × 101. The range of viscosity
ratios μ was fixed by the accessible experimental time scales, such that levelling was slow
enough to be monitored with AFM but fast enough to have reasonable experimental times.
The individual viscosities were measured independently through the capillary levelling
of simple stepped films of each single polymer, using the method described previously
(McGraw et al. 2011)(see table 1). Variations of the interfacial tension ratio over the
experimental temperature range are negligible, so that the ratio is taken to be Γ = 0.053
(Wu 1970); thus the liquid–air surface tension largely dominates that of the liquid–liquid
interface.
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Mw(PS) T μ μ

(kg mol−1) (◦C) (best fit) (independent)

53.3 150 1.1 × 10−4 5.3 × 10−5

53.3 165 1.5 × 10−3 3.0 × 10−4

53.3 180 7.1 × 10−3 7.1 × 10−4

183 150 8.5 × 10−3 4.2 × 10−3

183 165 7.4 × 10−3 2.0 × 10−2

183 180 4.6 × 10−2 4.6 × 10−2

758.9 150 1.7 × 10−1 6.9 × 10−1

758.9 165 1.2 × 100 5.8 × 100

758.9 180 1.5 × 100 1.4 × 101

Table 1. The viscosity ratios μ, between the bottom (PS) and top (PMMA) layers, for various PS molecular
weights Mw(PS), and annealing temperatures T . The viscosity ratios are obtained from: (i) a best fit of the
theory to the experimental excess capillary energy (‘best fit’); and (ii) the capillary levelling of simple stepped
films of each single polymer (‘independent’).

2.2. Theory
The system is modelled as two thin liquid layers atop each other, the ensemble being placed
on a rigid substrate, as sketched in figure 1(a), and Cartesian coordinates (x, y, z) are
used, as shown in figure 1(b). The system is assumed to be infinite in both the x-direction
and y-direction, and invariant by translation in the latter. The typical length scales of the
experiment are well below the capillary length, thus gravitational effects can be neglected.
In thin, highly viscous polymer films, with Reynolds and Mach numbers are much smaller
than 1, relaxation is driven by capillarity, and inertial and compressibility effects can be
neglected. Furthermore, the polymer melts may be treated as Newtonian liquids (McGraw
et al. 2012), since the typical viscoelastic times, under the present experimental conditions,
are of the order of a few seconds (Hirai et al. 2003) whereas the levelling time scales are
much larger (minutes to hours). Finally, the film thicknesses are chosen to be large enough
such that disjoining forces are weak in comparison with the Laplace pressure (Seemann,
Herminghaus & Jacobs 2001; Sharma & Verma 2004).

The velocity fields and excess pressure fields with respect to the atmospheric pressure
are denoted as ui = (ui, 0,wi) and pi, respectively. In the small-slope limit, the tangential
stress balance at the liquid–liquid interface reads η1(∂u1/∂z) = η2(∂u2/∂z) (Jachalski
et al. 2014). In the regime where μ � 1, this relation further leads to ∂u2/∂z = 0
to leading order. Together with a no-shear-stress boundary condition at the liquid–air
interface, these are consistent with plug flow in the top layer: much like in the freestanding
case discussed above. Within the lubrication approximation, the bottom layer is expected
to display a horizontal Poiseuille-like flow. Furthermore, we assume continuity of the
velocity field across the liquid–liquid interface, i.e. we impose a no-slip boundary
condition. As a result, we expect an additional linear term in z (like Couette flow for a
simple shear geometry) in the horizontal velocity field of the bottom layer.

Within this framework, and invoking the lubrication-like scale separation, the heights
hi(x, t) of both interfaces (see figure 1b) follow a set of nonlinear partial differential
equations (see appendix A for more details). We refer to this first model as the asymptotic
model. We note that a similar derivation was made for the non-Newtonian case for the
upper liquid using the Jeffreys model (Jachalski, Münch & Wagner 2015). The governing
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equations are

∂t(h2 − h1) = −[(h2 − h1)u2]′, (2.1a)

∂th1 = −
[
(γ2h′′′

2 + γ1h′′′
1 )

h3
1

12η1
+ h1u2

2

]′
= −

[
−p′

1
h3

1
12η1

+ h1u2

2

]′
, (2.1b)

γ2h′′′
2 (h2 − h1)+ (γ2h′′′

2 + γ1h′′′
1 )

h1

2
+ 4η2[u′

2(h2 − h1)]′ − η1
u2

h1
= 0, (2.1c)

where the prime indicates a derivative with respect to x. The excess pressure field
p1 = −γ1h′′

1(x)− γ2h′′
2(x) in the bottom film corresponds to the sum of the two interfacial

Laplace pressure jumps in the small-slope limit. Notably, (2.1c) has the same form as the
tangential stress balance for a single liquid film on a solid substrate with a large slip length
(Münch et al. 2005). The associated apparent slip length in our configuration is b ∼ h1/μ
(Jachalski et al. 2015), which is large if μ � 1, i.e. if the bottom layer is much less viscous
than the top one. We note that a similar analogy with flow over a slippery substrate has
been proposed to describe the flow of nanobubbles on hydrophobic surfaces (Lauga &
Brenner 2004).

The heights of the two interfaces can be further expressed as perturbations from the
equilibrium configuration: h1(x, t) = h̄1 + δh1(x, t) and h2(x, t) = h̄2 + δh2(x, t), where
h̄i denote the mean heights of the two interfaces: h̄1 = h0 and h̄2 = 5h0/2 in our specific
geometry. We then assume that δhi � h̄i, and keep only the leading-order linear terms.
We stress that this condition is not strictly valid at the liquid–air interface, but: (i) the
linearization allows us to obtain an analytical solution; and (ii) in both limiting cases of
freestanding and supported films, the linearization does preserve the self-similar structure
of the nonlinear problem (Salez et al. 2012a,b; Ilton et al. 2016). Therefore, our approach
is still expected to provide some relevant features for the experimental system.

Using the Fourier transform f̃ (k) of a function f (x), defined as f̃ (k) =
(1/

√
2π)

∫
dxf (x) exp(ikx), we find from the linearization of the governing equations

above, that

∂δ̃hi

∂t
= si,j(k)δ̃hj, (2.2)

with si,j representing the elements of the decay-rate matrix s associated with the mode
k (see appendix A). The Einstein summation convention is used in (2.2). The general
solution to this set of equations is

δ̃h1 = α exp (λ1t)+ β exp (λ2t), (2.3a)

δ̃h2 = αK1 exp (λ1t)+ βK2 exp (λ2t), (2.3b)

where (λ1, λ2) and (1,K1), (1,K2) are the eigenvalues and eigenvectors of s, respectively.
The two coefficients α and β can be found using the initial conditions: δh1(x, t = 0) = 0,
and δh2(x, t = 0) = h0[Θ(x)− 1/2], whereΘ denotes the Heaviside function (i.e.Θ(x >
0) = 1, Θ(x < 0) = 0).

We stress that the main assumption in the asymptotic model is the small-slope
approximation. However, the initial profile is sharp in the experiments, with large slopes.
Therefore, the early-time dynamics cannot be fully captured. To evaluate and extend
the validity of the asymptotic model described so far, a second model was developed
that does not assume any specific leading-order flow profiles in the two layers, and that
takes into account all the terms of the Stokes equations. Thus, this model includes the
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Figure 2. (a) Experimental profiles h(x, t) = hi(x, t) of the liquid–liquid (i = 1, bottom) and liquid–air (i = 2,
top) interfaces of a PMMA (Mw = 56 kg mol−1) stepped layer on a PS (Mw = 53.3 kg mol−1) layer (see
figure 1), during levelling at T = 150◦C. The viscosity ratio for these samples is μ = 1.1 × 10−4 (see table 1).
The samples were fabricated with h0 = 180 nm. (b) Theoretical profiles calculated using the asymptotic model.
The times, rheological properties and geometry have been chosen to match the experimental conditions of the
data shown in (a).

contribution of vertical flow in the leading-order momentum balance, in contrast with the
asymptotic model. We refer to this second model as the full-Stokes model (see details in
appendix B). The stress boundary conditions are linearized in the profiles’ perturbations,
in order to get an analytical solution that can be compared with the asymptotic model.
As a result, the full-Stokes model exhibits governing equations similar to (2.2), with the
exception of the matrix elements sStokes

i,j , which are more complicated functions of k than
si,j. Excellent self-consistent agreement between the solutions of the two models is found
in the small-slope limit at small wavenumber (see appendix B).

3. Results and discussion

3.1. Interface profiles
In figure 2(a), we show the experimental profiles of the liquid–air and liquid–liquid
interfaces at different stages of evolution for the case of PMMA with Mw = 56 kg mol−1,
PS with Mw = 53 kg mol−1 and an annealing temperature of 150 ◦C. We note that each
pair of interface profiles at a given annealing time corresponds to a different sample, as
the top layer must be removed in order to image the buried liquid–liquid interface. Thus, a
series of equivalent samples was prepared in order to reconstruct the entire evolution. Each
sample was annealed for a given time, its liquid–air interface was imaged, the PMMA layer
removed, and finally the profile of the bottom layer at the same location was imaged. The
liquid–air interface develops a ‘bump’ on the upper side of the step with positive curvature
(i.e. negative second derivative of the profile), and a ‘dip’ on the lower side with negative
curvature. With increasing annealing time, the bump and dip spread apart horizontally
as the step levels. Furthermore, at late times, the bump and dip decrease in height. As
discussed previously (Salez et al. 2012a), the bump and dip develop to alleviate the large
gradients in Laplace pressure due to the highly curved corners of the original stepped
geometry. At early annealing times (t < 8 min), there is a sharp feature near the centre of
the step that seems to be a remnant of the initial corner of the step.

The liquid–liquid interface deforms significantly in response to the Laplace pressure
due to the stepped liquid–air interface. Remarkably, the deformation of the liquid–liquid
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interface initially grows vertically, before levelling out, which implies that while the
surface energy associated with the liquid–air interface decreases, it partially does so at
the cost of an increasing surface energy of the liquid–liquid interface. On either side of
the step one can observe features in the liquid–liquid interface which mimic that of the
bump and dip of the liquid–air interface. The deformation of the liquid–liquid interface
can be qualitatively understood by considering the interfacial tension ratio Γ = γ1/γ2,
as well as the viscosity ratio μ = η1/η2 (see § 3.2 for a detailed study of the latter)
introduced above. Since Γ � 1, the liquid–liquid interface is much more compliant than
the liquid–air interface, and hence the liquid–liquid interface adapts and follows the
liquid–air interface. Moreover, the total interfacial energy of the system is dominated by
the liquid–air contribution, as demonstrated quantitatively below (see § 3.3).

Figure 2(b) shows the theoretical profiles generated from the asymptotic model, with all
the physical parameters matching the experimental conditions of the data in figure 2(a).
The model captures the essential features observed in the experiments, with the exception
of a few early-time features (e.g. initial vertical growth of the liquid–liquid interface and
sharp feature near the step corner). In fact, at early times, the small-slope approximation
is violated since ∂h2/∂x|x=0 is of order one. We thus suspect vertical flows, which
were neglected in the leading-order momentum balance of the asymptotic model, to be
responsible for such features. The full-Stokes model, which accounts for vertical flow,
does capture these early-time details (see appendix B), which supports our suggestion.

3.2. Effect of the viscosity ratio
Figure 3(a) shows the experimental liquid–air (i.e. PMMA–air) interface profiles, at an
annealing temperature of 165 ◦C, for various annealing times and PS molecular weights.
For the experimental profiles in figures 2(a) and 3, μ is always much smaller than 1 –
except in the case of Mw(PS) = 758.9 kg mol−1 at 165 ◦C, for which μ is of order unity
(see table 1). As explained in § 3.1, the evolution of the system is mostly driven by the
gradients in Laplace pressure along the liquid–air interface. The resulting pressure field in
the top PMMA layer is transferred to the underlying PS layer, thereby inducing flow in the
latter and thus deformation of the liquid–liquid interface. Finally, it is immediately clear
from figure 3(a) that for samples having identical annealing temperatures, annealing times
and geometry, the lower the viscosity of the underlying PS layer, the faster the levelling of
the liquid–air interface. This highlights the importance of the bottom layer in the relaxation
of the top layer, and is in line with the discussion in § 2.2 about the apparent slip length
b ∼ h1/μ in our configuration (Jachalski et al. 2015).

As discussed in the introduction, the capillary levelling of thin liquid films can exhibit
self-similar regimes. For films supported on no-slip substrates and with the associated
Poiseuille flow, the self-similar variable is x/t1/4, while for freestanding films and plug
flow, x/t1/2 provides the appropriate rescaling. Figure 3(b) shows the same data as in
figure 3(a) with the horizontal axis rescaled as expected for a Poiseuille flow. For the
largest viscosity ratio, obtained with Mw(PS) = 758.9 kg mol−1, the rescaled profiles
collapse well with one another. This is consistent with the physical intuition that a
high enough viscosity in the bottom layer renders the situation analogous to capillary
levelling on a solid substrate. However, for the two smaller viscosity ratios, there is no
such collapse, which suggests that there is no ∼t1/4 self-similar behaviour within the
experimental temporal range. Similarly, rescaling the x-axis by t1/2 (not shown) does not
allow us to collapse the experimental profiles either. Therefore, in order to investigate
the temporal evolution in more detail, we consider in § 3.3 the evolution of the surface
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Figure 3. (a) Experimental liquid–air (i.e. PMMA–air) interface profiles, at an annealing temperature of
165 ◦C, for various annealing times and PS molecular weights, as indicated. (b) Same experimental data as
in (a), but with a rescaled horizontal axis. For both panels, the 53.3 and 758.9 kg mol−1 data have been shifted
horizontally and vertically for clarity.

energy of the system – i.e. a global observable linked to capillary levelling (McGraw et al.
2012).

3.3. Energetic considerations
The excess capillary energy Ei of interface i is proportional to the interfacial tension γi, as
well as to the difference between the interfacial area Si and the interfacial area S0

i of the
flat equilibrium state: Ei = γi(Si − S0

i ). Given the invariance of the system with respect to
the y-direction, and relating the interfacial lengths to the local profiles hi(x), we consider

the excess capillary energies per unit length defined as: Ei = γi
∫

dx (
√

1 + h′
i(x)

2 − 1).
In order to account for the different initial liquid–liquid interfacial lengths, resulting from
the different h0 values and thus step heights, the excess capillary energies per unit length
can be normalized by the corresponding initial values γ2h0 for the liquid–air interface.
In figure 4 the normalized excess capillary energy per unit length is plotted versus
dimensionless time for both the liquid–liquid (i = 1) and liquid–air (i = 2) interfaces,
from the data shown in figure 2(a), as well as from data obtained with two other thicknesses
h0. At dimensionless times tγ2/(h0η) larger than ∼ 10, one observes that the excess
capillary energies of both interfaces seem to decrease as t−1/2 power laws. In addition,
as expected and discussed in § 3.1, the contribution of the liquid–liquid interface is ∼ 7
times smaller than that of the liquid–air interface. This dominance of the liquid–air
excess interfacial energy to the total interfacial energy confirms the intuitive remark made
previously that the liquid–liquid interface deforms with a relatively little cost since Γ � 1.
In the following, we thus focus on the liquid–air interface alone. Conveniently, one can
then prepare a single sample and follow the evolution of the liquid–air interface through
repeated annealing, rather than having to sacrifice the sample by dissolving the top PMMA
layer. The excess capillary energies per unit length can be computed from the asymptotic
model, i.e. in the small-slope limit, with the approximation Ei 	 γi

∫
dx h′

i(x)
2/2. We

note that, under this approximation, if the profile of a given interface is self-similar, such
that hi(x, t) = fi(x/tα) with fi a function of a single variable, then Ei ∼ t−α . Therefore,
Ei ∼ t−1/4 or Ei ∼ t−1/2 indicate the dominance of Poiseuille or plug flows, respectively,
as discussed in § 3.2.

Figure 5(a–c) shows the normalized excess capillary energy per unit length E2 of the
liquid–air interface as a function of time t, for different annealing temperatures and PS
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Figure 4. Normalized excess capillary energy per unit length of the liquid–liquid (i = 1, unfilled) and
liquid–air (i=2, filled) interfaces, for PMMA (Mw =56 kg mol−1) stepped films on PS (Mw =53.3 kg mol−1)
films, with three different values of the nominal thickness h0 (see figure 1) as indicated, and an annealing
temperature of 150 ◦C. The excess capillary energies per unit length have been normalized by the corresponding
initial values for the liquid–air interface. Long-term ∼t−1/2 behaviours are indicated with dashed lines.

molecular weights. For each panel, three identical samples were prepared and annealed
at different temperatures. The experimental data are overlaid with best fits to the excess
capillary energy per unit length E2 of the liquid–air interface obtained from the asymptotic
model, using the PS viscosity as the single free parameter. We note an excellent agreement
between experiments and theory, except at the earliest times for the sample made with a
53.3 kg mol−1 PS molecular weight and annealed at 150 ◦C. In that case, the experimental
values are substantially higher than predicted by the model, which is likely due to the sharp
feature observed at early times (see figure 2a), as noted in § 3.1. Indeed, this feature cannot
be captured by the asymptotic model (see figure 2b) which neglects any vertical flow in
the leading-order momentum balance (see appendix B), and it would elevate the capillary
energy compared to a profile without that feature. Finally, the viscosity ratios obtained
from the fits are in good agreement with independent measurements (see table 1) – both
approaches being within an order of magnitude of each other. We note that the viscosities
are highly dependent on temperature and that small temperature differences between
samples can have large effects on the measured viscosity ratio. Furthermore, as the driving
force for flow is surface energy, there is a possibility of trace contaminants reducing the
surface energy from what is assumed, thus modifying the capillary velocity of the system
(Hourlier-Fargette et al. 2017; Peaudecerf et al. 2017). However, this contribution to any
error in the capillary velocity is small in comparison to that related to the temperature
variation on the viscosity.

While the experimental data in figures 4 and 5(a) seem consistent with a E2 ∼ t−1/2

trend, the asymptotic model does not predict a well-defined regime with such a scaling
law. Instead, the model seems to exhibit a double cross-over, with a transient exponent
that changes smoothly from a value near −1/4, to a value near −1/2, before increasing
again towards −1/4, as seen in figure 5(a–c). The latter seems to correspond to a proper
long-term self-similar regime, valid for all viscosity ratios. Thus, the energy eventually
becomes independent of the viscosity η2 of the top film, which indicates that most
of the dissipation occurs in the bottom film at late times. This long-term self-similar
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Figure 5. (a–c) Normalized excess capillary energy per unit length E2/(γ2h0) of the liquid–air interface as a
function of time t, for PMMA (Mw = 56 kg mol−1) stepped layers on PS layers, annealed at 150 ◦C (◦), 165 ◦C
(
) and 180 ◦C (
). The PS molecular weights are: (a) Mw = 53.3 kg mol−1, (b) Mw = 183 kg mol−1 and
(c) Mw = 758.9 kg mol−1. The solid lines of corresponding colours indicate the normalized excess capillary
energy per unit length E2/(γ2h0) of the top interface calculated from the asymptotic model, with the PS
viscosity as a single fitting parameter. The bands span a variation in viscosity ratio from half of the best fit to
double of the best fit. The excess capillary energies per unit length have been normalized by the corresponding
initial values for the liquid–air interface. The t−1/2 and t−1/4 trends are indicated with dashed lines. (d–f )
Normalized viscous dissipation power per unit length Pη2/γ2 as a function of time t, calculated from the
asymptotic model, for the three viscous mechanisms of (3.1): plug (P = Pplug), Poiseuille (P = PPoiseuille) and
Couette (P = PCouette). For each panel, the viscosity ratio μ corresponds to the 165 ◦C (
) experimental data
in the panel above. The t−5/4 trend is indicated with dashed lines. (g–i) The fractional composition of the total
viscous dissipation displayed in the panel above.

regime is reached experimentally in some cases (see figure 5b,c), but is not accessible
for the smallest viscosity ratios due to the large experimental time scales involved. The
apparent E2 ∼ t−1/2 regime observed in figures 4 and 5(a) is thus a transient, intermediate
behaviour.

The asymptotic model can be used to gain further insight into the effect of the viscosity
ratio, by expressing the conservation of energy. As the films are thin, body forces may
be neglected. The capillary energy decreases primarily through viscous dissipation. The
rate of change of the total capillary energy per unit length can be written as the sum of
the three contributions to the viscous dissipation power induced by the characteristic flows
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highlighted in § 2.2

∂tE = −
∫

dx4η2(h2 − h1)u′2
2︸ ︷︷ ︸

Pplug

−
∫

dx
p′2

1 h3
1

12η1︸ ︷︷ ︸
PPoiseuille

−
∫

dxη1
u2

2
h1︸ ︷︷ ︸

PCouette

. (3.1)

An explicit derivation of (3.1) is provided in appendix C. The first term (Pplug) is
related to a velocity profile that is invariant vertically through the top layer’s thickness,
corresponding to plug flow. The second term (PPoiseuille) is related to a parabolic velocity
profile, i.e. Poiseuille flow, caused by the horizontal Laplace pressure gradient in the
bottom layer. The third term (PCouette) corresponds to a linear variation in the velocity
profile of the bottom layer, as seen in a simple shear geometry or Couette flow.

Figure 5(d–f ) displays the normalized viscous dissipation power per unit length as a
function of the rescaled time, calculated from the asymptotic model, for the three viscous
mechanisms of (3.1). The normalized viscous dissipation power per unit length has been
calculated for the three experimentally relevant viscosity ratios, which correspond to
the experimental results from figure 5(a–c), respectively. Three main regimes can be
identified from the respective fractions of the total viscous dissipation power shown in
figure 5(g–i). At early times, the Poiseuille contribution dominates, which is associated
with a E ∼ t−1/4 behaviour (McGraw et al. 2012) and thus ∂tE ∼ t−5/4. At late times,
the Couette contribution dominates, but since the Couette flow in the bottom layer is
indirectly induced by the Laplace pressure gradient from the liquid–air interface, it also
exhibits a E ∼ t−1/4 power law like the Poiseuille flow. Therefore, at late times, we also
expect a ∂tE ∼ t−5/4 behaviour. Furthermore, we recover the result stated above that the
dissipation occurs mostly in the bottom film in this regime. Finally, at intermediate times,
in between these two extreme regimes, the plug contribution seems to dominate. This is
associated with a transient temporal exponent for the energy, passing by the −1/2 value
(Ilton et al. 2016). Taking into account the early, intermediate and late times discussed
above, we recover the non-monotonic trend for the temporal exponent from the theoretical
predictions (lines) in figure 5(a–c). The non-monotonic trend can be further characterized
as a Poiseuille-to-plug-to-Couette double cross-over.

In the case where μ ∼ 1, valid for PS with a molecular weight of 758.9 kg mol−1,
the shear stress at the liquid–liquid interface does not vanish and therefore shear terms
must be taken into account in the top layer. The asymptotic model should thus be
refined for bilayer films with such material properties (see the lubrication model in
appendix B.3). However, according to the asymptotic model, the late-time dissipation is
mainly dominated by the Couette contribution in the bottom layer (see figure 5f ), and this
model reproduces qualitatively the data and in particular the x/t1/4 self-similarity of the
profiles (see figure 3b). Nevertheless, we stress that the prefactor of the late-time scaling
law E2 ∼ t−1/4 from the asymptotic model is larger than the one from the lubrication
model, as observed in figure 8 (see appendix B.3). As a result, the fitting procedure leads
to a systematic underestimation of the viscosity of the bottom layer, as confirmed in table 1.

Finally, as stated in § 2.2, the set of equations (see (2.1a), (2.1b) and (2.1c)) that forms
the asymptotic model is reminiscent of the equations that describe capillary levelling on
a substrate with slip (Münch et al. 2005). For a nearly constant bottom layer thickness h1,
the Couette dissipation power per unit length Pplug = η1

∫
dxu2

2/h1 (see (3.1)) is indeed
similar to the power per unit length k

∫
dxu2

2 dissipated on a solid substrate through
friction, provided that the friction coefficient k is identified to η1/h1 and the slip velocity
to u2. As a consequence, the bottom film acts as a lubrication layer below the top stepped
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Capillary levelling of immiscible bilayer films

film, which leads to an apparent slip length given by b ∼ h1η2/η1. As such, our first (i.e.
Poiseuille-to-plug) cross-over mimics the one expected for a single film supported on a
rigid substrate with varying slip boundary condition (Münch et al. 2005; McGraw et al.
2016).

4. Conclusion

In this article, we examined the effect of a thin liquid substrate on the capillary levelling
of a thin liquid film placed atop. Specifically, we prepared stepped polymer layers that
were placed onto other, immiscible and flat polymer layers supported on solid substrates.
The bilayer films were observed to flow and relax towards a flat equilibrium configuration.
We showed that the liquid–liquid interface deforms substantially. In the samples studied,
the viscosity ratio between the two layers was varied over a large range, with the bottom
layer being less viscous, or as viscous as the top layer. We have shown that the viscosity
ratio has a major impact on the resulting dynamics. Unlike the capillary levelling of
simple stepped films on solid substrates, or freestanding films, the interfacial profiles do
not exhibit any clear, unique and stable self-similar behaviour. We have developed and
validated a thin-film model in which the governing flow in the top layer is plug like, and
flow in the bottom layer is a with a combination of Poiseuille and Couette flows. Using
an energetic treatment, we have shown that the excess capillary energy introduced by the
step, with respect to the flat equilibrium state, is dissipated by those three coupled viscous
mechanisms, thus leading to a novel Poiseuille-to-plug-to-Couette double cross-over. The
time scales in the process depend on the viscosity ratio between the bottom and top layers.
We have found that the bottom, less viscous layer is analogous to a solid substrate with a
certain finite slip length. The experimentally measured energy dissipation is in agreement
with that obtained from the model. The results presented illuminate the intricate dynamics
of viscous bilayer assemblies, and might find applications through friction control by
lubrication, self-assembly and stability of multilayer processes.

Acknowledgements. The authors are grateful to J. Niven for valuable insight and discussions.

Funding. We gratefully acknowledge financial support by the Natural Science and Engineering Research
Council (NSERC) of Canada. V.B. and C.L.L. contributed equally to this work.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Vincent Bertin https://orcid.org/0000-0002-3139-8846;
Carmen L. Lee https://orcid.org/0000-0002-4397-6332;
Thomas Salez https://orcid.org/0000-0001-6111-8721;
Elie Raphaël https://orcid.org/0000-0003-0007-4790;
Kari Dalnoki-Veress https://orcid.org/0000-0002-0885-6634.

Appendix A. Asymptotic model

A.1. Model
This appendix expands upon the asymptotic model discussed in § 2.2. Dimensionless
variables are denoted by capital letters

ui = uUi, wi = wWi = uεWi, x = lX, z = h0Z,

pi = pPi, t = l
u

T, hi = h0Hi, ε = h0

l
,

⎫⎬⎭ (A1)
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where ε is the ratio between the typical vertical scale h0 (see figure 1) and a horizontal
length scale l, P = γ2h0/l2 is the typical pressure scale set by the Laplace pressure and
u = γ2h0/η2l is the characteristic velocity which is chosen such that the leading-order
equation for the top layer is compatible with plug flow. We note that there is no intrinsic
horizontal length scale in our configuration. Therefore, the length scale l is the typical
extent of the non-zero Laplace pressure, which can be estimated as the width of the
levelling profile (McGraw et al. 2011). Thus, the asymptotic model is valid when this
length scale is much larger than the typical height h0. Experimentally, this condition
is not valid at early times (t < 10 min in figure 2a). We rescale the viscosity ratio as
M = ε−2μ for appropriate governing equations in the bottom layer (Jachalski et al. 2015).
Non-dimensionalization yields the governing Stokes equations for both viscous layers

0 = −ε2∂XP2 + ε2∂2
XU2 + ∂2

ZU2, (A2a)

0 = −∂ZP2 + ε2∂2
XW2 + ∂2

ZW2, (A2b)

∂XU2 + ∂ZW2 = 0, (A2c)

0 = −∂XP1 + M(ε2∂2
XU2 + ∂2

ZU1), (A2d)

0 = −∂ZP1 + M(ε4∂2
XW1 + ε2∂2

ZW1), (A2e)

∂XU1 + ∂ZW1 = 0. (A2f )

At the free interface, the boundary conditions are the stress balance and the kinematic
condition (Jachalski et al. 2014)

P2 + ∂2
XH2

[1+ε2(∂XH2)2]3/2 = 2
∂ZW2[1 − ε2(∂XH2)

2] − (∂ZU2+ε2∂XW2)∂XH2

1 + ε2(∂XH2)2
, Z =H2,

(A3a)

(∂ZU2 + ε2∂XW2)[1 − ε2(∂XH2)
2] = 4ε2∂XU2∂XH2, Z = H2, (A3b)

∂TH2 = W2 − U2∂XH2, Z = H2. (A3c)

The boundary conditions at the liquid–liquid interface are the stress balance and the
kinematic condition. Furthermore, we assume that there is no slip at the interface. All
together, these read

P1 − P2 + Γ
∂2

XH1

[1 + ε2(∂XH1)2]3/2 = 2
∂Z(Mε2W1 − W2)[1 − ε2(∂XH1)

2]
1 + ε2(∂XH1)2

− 2
[∂Z(Mε2U1 − U2)+ ε2∂X(Mε2W1 − W2)]∂XH1

1 + ε2(∂XH1)2
, Z = H1 (A4a)

[
∂Z(Mε2U1 − U2)+ ε2∂X(Mε2W1 − W2)

][
1 − ε2(∂XH2)

2]
= 4ε2∂X(Mε2U1 − U2)∂XH1, Z = H1 (A4b)

∂TH1 = W1 − ∂XH1, Z = H1 (A4c)

W2 − W1 = (U2 − U1)∂XH1, Z = H1 (A4d)

U2 − U1 + ε2(W2 − W1)∂XH1 = 0, Z = H1. (A4e)
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Capillary levelling of immiscible bilayer films

At the solid–liquid interface, we assume no-slip and impermeability boundary conditions

U1 = W1 = 0, Z = 0. (A5a,b)

We consider the flow in the top layer as a perturbation

(U2,W2,P2) = (
U(0)

2 ,W(0)
2 ,P(0)2

)+ ε2(U(1)
2 ,W(1)

2 ,P(1)2
)
. (A6)

The leading order can be described as

∂ZU(0)
2 (X, Z, T) = 0 → U(0)

2 (X, Z, T) = U2(X, T), (A7a)

W(0)
2 (X, Z, T) = −(Z − H1)∂XU2 + W1(Z = H1), (A7b)

P(0)2 (X, T) = −2∂XU2 − ∂2
XH2, (A7c)

∂ZP1(X, Z, T) = 0 → P1(X, T) = −∂2
XH2(X, T)− Γ ∂2

XH1(X, T) (A7d)

U1(X, Z, T) = − 1
2M

∂XP1
(
Z2 − ZH1

)+ U2(X, T)
Z

H1
. (A7e)

The in-plane component of the flow is described by a set of coupled nonlinear equations.
Invoking further the kinematic condition results in (2.1a)

∂t(H2 − H1) = − [(H2 − H1)U2]′ , (A8)

where the prime denotes the derivative with respect to X. The volume conservation of the
bottom layer gives (2.1b)

∂tH1 = −
(

−P′
1

H3
1

12M
+ H1U2

2

)′
= −

[
(H′′′

2 + ΓH′′′
1 )

H3
1

12M
+ H1U2

2

]′
. (A9)

The final equation that relates U2 to the other variables can be found by integrating the
horizontal component of the Stokes equation with respect to Z at the next leading order

∂2
ZU(1)

2 + ∂2
XU(0)

2 = ∂XP(0)2 → ∂ZU(1)
2 (Z = H2)− ∂ZU(1)

2 (Z = H1)

= (∂XP(0)2 − ∂2
XU2)(H2 − H1). (A10)

We find the last governing equation, (2.1c), by inserting the two tangential stress balances,
(A3b) and (A4b), at leading order into the previous equation

H′′′
2 (H2 − H1)+ (H′′′

2 + ΓH′′′
1 )H1/2 + 4[U′

2(H2 − H1)]′ − M
U2

H1
= 0. (A11)
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A.2. Decay rates
The elements si,j of the decay-rate matrix s are found by taking the Fourier transforms of
the linearized governing equations

s1,1(k) = −γ1k4

[
h̄3

1
12η1

+ h̄3
1

4(η1 + 4η2k2h̄1h̄2)

]
,

s1,2(k) = −γ2k4

⎡⎣ h̄3
1

12η1
+

h̄2
1h̄2

(
1 − h̄1

2h̄2

)
2(η1 + 4η2k2h̄1h̄2)

⎤⎦ ,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(A12a)

s2,1(k) = −γ1k4

⎡⎣ h̄3
1

12η1
+

h̄2
1h̄2

(
1 − h̄1

2h̄2

)
2(η1 + 4η2k2h̄1h̄2)

⎤⎦ ,
s2,2(k) = −γ2k4

⎡⎢⎣ h̄3
1

12η1
+

h̄1h̄2
2

(
1 − h̄1

2h̄2

)2

(η1 + 4η2k2h̄1h̄2)

⎤⎥⎦ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A12b)

The eigenvalues are the decay rates, and are given by

λi = Tr(s)±
√

Tr(s)2 − 4 Det(s)
2

. (A13)

The eigenvectors of s take the form (1,Ki) with

Ki = λi − s1,1

s1,2
. (A14)

Appendix B. Full-Stokes model

B.1. Model
To remove any assumption associated with pre-supposed flow types and the temporal
scalings of the capillary energies, we derive a model from the Stokes equations (Huang &
Suo 2002; Rivetti et al. 2017). The stream functions ψi of each layer (i = 1, 2) are defined
as

ui = −∂zψi, (B1a)

wi = ∂xψi. (B1b)

The velocity fields satisfy the Stokes equations. This in turn implies that the stream
functions are solutions of biharmonic equations

(∂4
x + 2∂2

x ∂
2
z + ∂4

z )ψi = 0. (B2)

We take the Fourier transforms (defined in the main text) with respect to the variable x,
of the biharmonic equations, through the Fourier transforms ψ̃i of the stream functions,
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which results in fourth-order ordinary differential equations(
d
dz

)4

ψ̃i −
(

d
dz

)2

k2ψ̃i + k4ψ̃i = 0. (B3)

The general solutions are

ψ̃i(k, z) = Ai(k) cosh(kz)+ Bi(k) sinh(kz)+ Ci(k)z cosh(kz)+ Di(k)z sinh(kz). (B4)

The eight coefficients Ai,Bi,Ci,Di can be found using the boundary conditions: vanishing
velocity at the solid–liquid interface, continuity of velocity (including no slip) and stress
across the liquid–liquid interface and continuity of stress (including no shear stress) at
the liquid–air interface. The nonlinear terms of the curvature in the Laplace pressure
are neglected, as well as the nonlinear terms of the normal and tangential vectors to the
interfaces. This means that this model would be valid in the limit of small perturbation of
the interface. The boundary condition are listed below

w1 = 0 → ψ̃1 = 0, z = 0, (B5a)

u1 = 0 →
(

d
dz

)
ψ̃1 = 0, z = 0, (B5b)

w2 = w1 → −ikψ̃2 = −ikψ̃1, z = h1, (B5c)

u2 = u1 → −
(

d
dz

)
ψ̃1 = −

(
d
dz

)
ψ̃2, z = h1, (B5d)

η2(∂zu2 + ∂xw2) = η1(∂zu1 + ∂xw1) → η1

[(
d
dz

)2

ψ1 + k2ψ1

]

= η2

[(
d
dz

)2

ψ2 + k2ψ2

]
, z = h1. (B5e)

−( p1 − p2)+ 2∂z(η1w1 − η2w2) = −γ1∂
2
x h1 →

η1

[
3k2

(
d
dz

)
ψ̃1 −

(
d
dz

)3

ψ̃1

]
− η2

[
3k2

(
d
dz

)
ψ̃2 −

(
d
dz

)3

ψ̃2

]
= ik3γ1h̃1, z = h1.

(B5f )

η2(∂zu2 + ∂xw2) = 0 →
(

d
dz

)2

ψ2 + k2ψ2 = 0, z = h2. (B5g)

−p2 + 2η2∂zw2 = −γ2∂
2
x h2 → η2

[
3k2

(
d
dz

)
ψ̃2 −

(
d
dz

)3

ψ̃2

]
= ik3γ2h̃2, z = h2. (B5h)
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Full Stokes Asymptotic
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Figure 6. Dimensionless decay rates for the full-Stokes model (λStokes
i ) and asymptotic model (λi) versus the

dimensionless wavenumber kh0, in the experimental configuration where h̄2 = 5/2h̄1 = 5/2h0 (see schematic
in the top left inset). The bottom right inset displays a zoom of the same curves near kh0 = 1.5, and is plotted
with linear scales.

The Stokes equations in the x-direction read

∂xpi = ηi(∂
2
x ui + ∂2

z ui) → −ikp̃i = ηi

[
k2 d

dz
ψ̃i −

(
d
dz

)
ψ̃i

′′′
]
. (B6)

The governing equations for the temporal evolutions of the thickness profiles can be found
using the kinematic conditions

∂thi + ui∂xhi = wi, (B7)

where ui and wi are evaluated at z = hi. We further invoke small interfacial perturbations
and proceed to linearization as in the asymptotic model

∂tδ̃h1 = w̃1(z = h̄1) = sStokes
11 δ̃h1 + sStokes

12 δ̃h2, (B8a)

∂tδ̃h2 = w̃2(z = h̄1 + h̄2) = sStokes
21 δ̃h1 + sStokes

22 δ̃h2. (B8b)

These equations have the same general solutions as in the asymptotic model developed
in § 2.2. The elements sStokes

i,j of the decay-rate matrix are not written here but can be
found using a formal calculation software. It is then straightforward to write the solutions
as in (2.3) with the corresponding eigenvalues λStokes

i and eigenvectors (1,KStokes
i ).

Figure 6 displays the normalized decay rates as functions of the normalized wavenumber
in both the full-Stokes model and the asymptotic model, with the same dimensionless
parameters as in figure 2, i.e. μ = 1.1 × 10−4 and Γ = 0.053. The two models agree in
the small-wavenumber limit, kh0 → 0. At an intermediate wavenumber kh0 ∼ 1.544, the
determinant of the matrix sStokes changes sign and therefore one of the two eigenvalues,
λStokes

2 , becomes positive at larger wavenumbers (see bottom right inset of figure 6). Thus,
in the full-Stokes model, the large wavenumbers are unstable and grow with time: the
interface perturbation diverges as time increases. This is not physical as capillarity is the
only driving force and acts to stabilize the interface. We suspect that nonlinear terms in
the stress balances at interfaces – neglected so far – will regularize this behaviour.
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Figure 7. Comparison of the full-Stokes model and the asymptotic model in the specific case where h̄2 = 2h̄1.
(a) Dimensionless decay rates for the full-Stokes model (λStokes

i , dashed lines) and asymptotic model (λi, solid
lines) versus the dimensionless wavenumber kh0. (b) Normalized excess capillary energies per unit length
E2/(γ2h0) of the liquid–air interface, as functions of dimensionless time, as evaluated from the small-slope
expression E2 	 γ2

∫
dxδh′2

2 /2, for both models and for the same parameters as in figure 5(a) at 150 ◦C.
(c) (respectively (d)) Interface perturbation profiles δhi in the asymptotic model (respectively full-Stokes
model). The colours indicate the same experimental times as in figure 2.

B.2. Particular case: equal average layer thicknesses
We found empirically that the instability described in the previous section is not
present when the mean thicknesses of the two layers are equal, which amounts to h̄2 =
2h̄1. Therefore, we can compare in a more complete manner the two models in this
case. Figure 7(a) displays the normalized decay rates as functions of the normalized
wavenumber in both the full-Stokes model and the asymptotic model. We no longer
observe any positive decay rate in the full-Stokes model. At small wavenumber, which
means in the small-slope limit, we recover the previous statement which is that both
models are consistent with each other. In figure 7(b), the normalized excess capillary
energies per unit length of the liquid–air interface for both models are plotted as functions
of dimensionless time. In the long-time limit, when the step has levelled sufficiently such
that the typical slopes of the interfaces are much smaller than unity, we find an excellent
agreement between both models. However, at short times, the profile slopes are close
to unity and thus vertical flows and nonlinear terms play a significant role. Therefore,
at short times the full-Stokes model, which accounts for vertical flows, differs from the
asymptotic model. We point out that the excess capillary energies per unit length E2 of the

911 A13-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
45

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

SP
CI

 E
co

le
 s

up
ér

ie
ur

e 
de

 p
hy

si
qu

e 
et

 d
e 

ch
im

ie
 in

du
st

ri
el

le
s,

 o
n 

03
 F

eb
 2

02
1 

at
 1

2:
56

:1
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.1045
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


V. Bertin and others

100

10–1

Asymptotic

Full Stokes

Lubrication (9)

10–2

100 101 102 103 104

tγ2 / (η2h0)

E 2
/
(γ

2
h 0

)

Figure 8. Normalized excess capillary energies per unit length E2 of the liquid–air interface as functions of
dimensionless time, as evaluated from the small-slope expression E2 	 γ2

∫
dxδh′2

2 /2, for the three models
indicated, and for μ = 14, γ = 0.053, with equal mean thicknesses h̄1 = h̄2.

liquid–air interface, from both models, are systematically computed with the small-slope
expression E2 	 γ2

∫
dxδh′2

2 /2 which is not necessarily valid at short times. The exact
expression should be used instead to make direct comparisons with experiments at short
times. The discrepancy between the two models at short times is illustrated on the interface
perturbation profiles in figures 7(c) and 7(d), that would correspond to an experiment with
the same material properties as in figure 2 but with equal mean thicknesses. Interestingly,
we observe similar short-term characteristics in the full-Stokes model as the one observed
experimentally: a small sharp feature near the step and the deformation growth of the
liquid–liquid interface.

B.3. Case of a large viscosity ratio
We consider the μ � 1 case. In figure 8, the normalized total excess capillary energies per
unit length as functions of dimensionless time are plotted for the two models described
above. We also add for comparison the perturbative solution of a two-layer lubrication
model (see Jachalski et al. (2014) for a complete derivation in a more general case with
weak slip)

∂h1

∂t
=
[
−γ2

h2
1(3h2 − h1)

6η1
h′′′

2 − γ1
h3

1
3η1

h′′′
1

]′
, (B9a)

∂(h2 − h1)

∂t
=
{

−γ2

[
(h2 − h1)

3

3η2
+ h1(h2 − h1)(h2 − h1/2)

η1

]
h′′′

2 − γ1
h2

1(h2 − h1)

2η1
h′′′

1

}′
.

(B9b)

We observe that the asymptotic model is no longer in accordance with the full-Stokes
model in the large-time limit, while the lubrication model is. Indeed, when the viscosity
of the bottom layer is comparable to or larger than the one of the top layer, i.e. μ � 1, the
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asymptotic model is no more valid as it neglects shear terms in the top layer with respect
to elongational ones.

Appendix C. Energy balance

In this section, we derive the energy balance in (3.1) from the asymptotic model. In the
limit of small slopes, the excess capillary energies per unit length of the two interfaces are

E2 = γ2

2

∫
dxh′

2(x)
2, (C1a)

E1 = γ1

2

∫
dxh′

1(x)
2. (C1b)

We can derive these quantities with respect to time and get

∂tE2 = γ2

∫
dxh′

2∂th′
2 = −γ2

∫
dxh′′

2∂th2, (C2a)

∂tE1 = γ1

∫
dxh′

1∂th′
1 = −γ1

∫
dxh′′

1∂th1. (C2b)

The second equalities are obtained after integrating by parts. We can then use (2.1a) and
(2.1b), which leads to

∂tE2 = −γ2

∫
dxh′′

2
{
∂th1 − [(h2 − h1)u2]′

}
= −γ2

∫
dxh′′

2

{
−
(

−p′
1

h3
1

12η1
+ h1u2

2

)′
− [(h2 − h1)u2]′

}
, (C3a)

∂tE1 = γ1

∫
dxh′′

1

(
−p′

1
h3

1
12η1

+ h1u2

2

)′
. (C3b)

We then integrate by parts

∂tE2 = γ2

∫
dxh′′′

2

{
−
(

−p′
1

h3
1

12η1
+ h1u2

2

)
− [(h2 − h1)u2]

}
, (C4a)

∂tE1 = −γ1

∫
dxh′′′

1

(
−p′

1
h3

1
12η1

+ h1u2

2

)
. (C4b)

Introducing the total excess capillary energy per unit length E = E1 + E2, one gets

∂tE = −
∫

dx
[
γ2h′′′

2 (h2 − h1)
]

u2 +
∫

dxp′
1

(
−p′

1
h3

1
12η1

+ h1u2

2

)
. (C5)

We can then use (2.1c) to replace the term in square brackets

∂tE = −
∫

dx
{
−p′

1h1

2
− 4η2[u′

2(h2 − h1)]′ + η1
u2

h1

}
u2

+
∫

dxp′
1

(
−p′

1
h3

1
12η1

+ h1u2

2

)
. (C6)
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This can be further simplified and after another integration by parts of the term in [u′
2(h2 −

h1)]′u2, one gets

∂tE = −
∫

dx4η2(h2 − h1)u′2
2 −

∫
dxη1

u2
2

h1
−
∫

dx
p′2

1 h3
1

12η1
. (C7)
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