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Abstract The spontaneous migration of droplets on conical fibers is studied experimentally by depositing
silicone oil droplets onto conical glass fibers. Their motion is recorded using optical microscopy and analyzed
to extract the relevant geometrical parameters of the system. The speed of the droplet can be predicted as
a function of geometry and the fluid properties using a simple theoretical model, which balances viscous
dissipation against the surface tension driving force. The experimental data are found to be in good
agreement with the model.

1 Introduction

Spontaneous water transport systems at small length
scales are a crucial feature for the survival of many liv-
ing organisms and have been widely studied. In some
cases, the aim is to remove excess water. For instance,
water strider legs [1] and bird feathers [2] have water
repelling properties. However, many of the organisms
employing water transport do so to collect water. Spi-
der webs [3], the backs of desert beetles [4], desert moss
structures [5] and cacti spines [6–9] help these plants
and animals collect the water necessary for their sur-
vival. In the case of cacti, water collection is based on a
simple mechanism: when fog condenses at the tip of a
conical cactus spine, a droplet forms that spontaneously
migrates towards the widest end of the spine under the
action of surface tension as a driving force. Many recent
artificial water harvesting systems have been inspired
by this mechanism [10–16], with the intent of fighting
drought in arid environments. However, there are still
unanswered questions about the droplet dynamics in
this system.

A standard framework to describe droplets on cylin-
drical fibers has been developed by Caroll [17,18],
who also highlighted the existence and the transition
between two possible equilibrium configurations for a
droplet on a fiber: the asymmetric clam shell configu-
ration, in which the droplet is in contact with one side of
the fiber, and the axisymmetric barrel configuration, in
which the droplet envelopes the fiber. Drop transport
along fibers may be induced by several means; previ-
ous works have used gradients in coating [19], temper-
ature gradients [20,21] and gravity [22–25] to control
the motion of droplets on cylindrical fibers. Lorenceau
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and Quéré [26] were the first to propose a theoretical
model, based on Carroll’s framework, to explain bar-
rel shaped droplet dynamics on conical fibers. They
showed that a gradient in Laplace pressure along the
fiber will drive the motion of the droplet: the thicker
the fiber is, the smaller the Laplace pressure will be,
thus creating a spontaneous migration of the droplet
toward thicker regions of the fiber. Their work is focused
on large drop and fiber systems (characteristic length
scale of approximately 1 mm), at which gravity must
be taken into account and for a small range of relative
drop sizes, i.e., the drop size is compared to the fiber
radius. The experimental results from Lorenceau and
Quéré focus on the case where the drop size is com-
parable to the fiber radius, and therefore, the drop is
quasi-cylindrical, along with considering the theoretical
explanation for when the drop is quasi-spherical. Other
recent theoretical, simulation and experimental works
on this topic [16,27–32] have focused on large length
scales and, in some of these studies, investigated where
gravity fully balances the surface tension driving force.
Smaller length scales have been explored in a more
recent study, where the data were analyzed with the
model presented by Lorenceau and Quéré [33]. In con-
trast to the model presented by Lorenceau and Quéré,
others have modeled the driving force being due to sur-
face tension acting on the point of contact between
the fiber and droplet [16,31]. Moreover, the migration
of clam shell drops has also been investigated [34,35].
In addition, the spontaneous migration of drops inside
a conical tube or a wedge has been studied recently
and theoretical models were proposed to describe this
case [28,36–41]. Even if the geometry differs, the same
forces are at play: gravity and gradients in the Laplace
pressure. More generally, the asymmetry created by
cone-like structures has been an inspiration in the field,
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for instance, in elastocapillarity, where a liquid drop
between two elastic fibers or thin sheets can make them
coalesce or separate [42–46].

In the present work, we study the migration of
highly viscous, totally wetting, and thus barrel-shaped,
droplets on conical glass fibers on length scales at
which gravity can be neglected. We explore a large
range of drop sizes relative to the fiber radius. In this
droplet/conical fiber system, the only forces acting on
the droplet are a driving force originating from sur-
face tension and the viscous shear force. The model we
present is equivalent to that of Lorenceau and Quéré,
with a modification to the assumptions used to describe
the geometry of the drop. The simple theoretical model
well predicts the droplet speed as a function of the
radius, the gradient of the radius, droplet volume, as
well as the surface tension and viscosity of the fluid.

2 Experimental methods

The glass fibers were prepared by pulling standard
borosilicate glass capillary tubes with an outer diam-
eter of 1 mm in a magnetic micropipette puller (Nar-
ishige PN-30). The resulting shape of the transformed
pipette was a nearly conical fiber with a changing gra-
dient and tip size of tens of micrometers. We note
that though the fibers are “trumpet” shaped, with
a gradient in diameter that increases weakly as the
diameter increases, on the length scale of the droplets
they are conical. The variations in diameter and gra-
dient were unique to each pipette. Glass was chosen
because it presents a well-controlled and smooth sur-
face. Three different silicone oils, i.e., poly(dimethyl
siloxane) (PDMS), were used: vinyl terminated PDMS,
silanol terminated PDMS and vinyl terminated copoly-
mer (0.3–0.4% vinylmethylsiloxane)-dimethylsiloxane
(Gelest). The respective kinematic viscosities are 5000
cSt, 2000 cSt and 1000 cSt and a surface tension of
γ = 22 mN/m. Silicone oils were the most appropriate
liquids in this case, as they have well-controlled viscosi-
ties, are non-volatile and chemically stable. These oils
also totally wet glass which means that droplets have a
zero equilibrium contact angle with the fibers.

A glass fiber is cleaned using acetone and methanol to
remove any dust particles. It is then fixed in a horizontal
orientation, and a small droplet of PDMS is placed close
to the tip of the fiber as shown in Fig. 1a at t = 0 s. The
droplet is first produced using another micropipette,
which then deposits it on to the fiber by brushing the
droplet perpendicularly on the top of the fiber. Once the
droplet is deposited, its motion is recorded from above
using an optical microscope. Snapshots of the result-
ing time series of the motion are shown in Fig. 1a. An
average frame rate of 1 image per second is used. The
recording continues until either the droplet exits the
field of view or it loses its barrel shape and axial symme-
try, which happens when the fiber radius becomes large
compared to the droplet size. The first two droplets
migrating on an as-cleaned fiber coat the fiber with a

(a)

(b)

Fig. 1 a Microscope images of droplet migrating along a
conical fiber at different times. The third panel is anno-
tated with the wedges defined in the model (see Sect. 3). b
Schematic of a barrel-shaped droplet on a pre-wetted con-
ical fiber with the relevant lengths identified. The surface
tension γ acting as a driving force on the droplet is also
shown

thin film of PDMS. Here we focus mainly on subse-
quent droplets, as we wish to study droplet motion on
fibers which are pre-wet by a homogenous thin liquid
film. Subsequently, the migration of several droplets of
different volumes is recorded and analyzed.

To ensure that gravity had no impact on the measure-
ments, the experimental setup (including the conical
fiber and the microscope) was tilted at an angle and the
experiment was reproduced in this configuration. The
resulting data presented no difference with the rest of
the recorded data; thus, gravitational effects are over-
whelmed by surface tension-driven forces. The domi-
nance of surface tension over gravity in the experiments
presented is to be expected since the capillary length of
the silicone oils used is lc =

√
γ/(ρg) ∼ 1.5 mm, with

density ρ ≈ 965 kg/m3 and g the acceleration due to
gravity.

Several parameters of interest are extracted from the
videos: the fiber radius r, the radius gradient dr/dz as a
function of the axial coordinate z, as well as the droplet
properties, height h, volume Ω, width w and position
at all times. Some of these parameters are denoted in
Fig. 1b. All parameters are obtained by direct image
analysis. The droplet position is retrieved by averag-
ing the z-position of the maximum and minimum of
parabolas fitted, respectively, to the top and bottom of
the detected edge of the droplet. The speed v is cal-
culated as the numerical time derivative of the droplet
position.
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Fig. 2 Speed v of several droplets migrating one after
another along the same conical fiber plotted as a function
of their position on the fiber z. Different markers represent
droplets of different volumes Ω

As the goal of this study is to find a comprehensive
expression for v as a function of all the other variables,
a first step is to look at how the speed varies with the
other parameters of the system. A plot of v as a func-
tion of the droplet position (Fig. 2) shows the speed of
four droplets of different volumes that migrated on the
same pipette. From this plot, it is evident that the speed
increases with position. However, we also know that
both the radius and the gradient of the fiber increase
with position. Therefore, the raw data do not allow
us to dissociate the effect of each parameter. A sec-
ond observation is that the speed increases with the
droplet volume. Since there are several variables which
influence the droplet speed, it is necessary to develop
a model in order to attain a comprehensive expression
for v as a function of all the relevant parameters of the
system.

3 Theoretical model

In order to develop a model, we consider all the forces
applied on the droplet. Gravity is negligible, verified
both by the experiment (see Sect. 2) and the fact that
the length scale of the experiments is well below the
capillary length. We assume that inertial forces are
negligible, as the Reynolds number is on the order of
10−6. Two main contributions remain: the driving force
caused by the surface tension γ of the silicone oil, as
depicted in Fig. 1b, and the viscous dissipation in the
liquid. The first contribution, which we denote Fγ , is the
net surface tension force exerted by liquid–air interface
of the pre-wetted fiber onto the droplet volume. It is
composed of a difference between two surface tension
forces: one acting at the extremity of the advancing
side where r = r+ and another acting at the reced-
ing side where r = r−. We note that here we con-
sider the external forces acting on the droplet (surface
tension at the contact lines), rather than the method
of internal Laplace pressure gradients as implemented

by Lorenceau and Quéré [26]. A simple approximation
gives the following final expression for Fγ :

Fγ ∼ 2πγr+ − 2πγr− ∼ γw
dr

dz
. (1)

We note that this simple approximation ignores the dif-
ference in the advancing and receding contact angles [16].
The second contribution, denoted Fη, results from the
viscous force at the solid–liquid interface. In order to
attain a simple expression for this quantity, we approx-
imate the droplet shape as two joined wedges drawn in
the third panel of Fig. 1a which depend on h and w.
Although a crude approximation, it should suffice for
quantifying the dissipation at the level of scaling; fur-
thermore, this approximation is consistent with the use
of h to describe the dynamics of the Plateau–Rayleigh
instability [47]. In this case, the viscous force can be
evaluated by integrating the shear force over the entire
liquid–solid area (Als) beneath the wedge [48]:

Fη ∼
∫∫

Als

η
dv

dy

∣∣∣
∣
y=0

∼ ηrv

tan(θ)
, (2)

where y represents the radial coordinate, which is equal
to 0 when the point of interest is at the center of
the fiber, η is the dynamic viscosity and θ is angle
of the wedges which approximate the droplet. Here,
we have neglected any prefactors and the logarithmic
term which truncates the integral in viscous wedge dis-
sipation (see Ref. [48]). The only parameter from this
expression that has not directly been measured in the
experiment is tan(θ). Using simple trigonometry, we
have:

tan(θ) =
h

w/2
. (3)

Substituting Eq. 3 back into Eq. 2, a final expression
for Fη is obtained:

Fη ∼ ηrvw

h
. (4)

In the absence of gravity and inertia, we must have Fη ∼
Fγ . Thus, equating Eqs. 1 and 4 yields an expression
for the speed as a function of all the other relevant
parameters:

v ∼ γ

η

h

r

dr

dz
. (5)

The droplet height can in principle be obtained from
an exact equation of the shape of a droplet on a fiber,
assuming the quasi-static approximation. For a bar-
rel droplet on a cylindrical fiber, it has been shown
that there is a non-trivial dependence on the fiber
radius [17,18,49,50]. The relationship between h and
r as derived by Carroll [17,18] is shown as a solid
black line in Fig. 3 with reduced coordinates h/Ω1/3

and r/Ω1/3 and is non-monotonic. The dashed black
line shown in the inset of Fig. 3 represents the asymp-
totic regime in which h = r. For large r, h tends
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Fig. 3 Reduced height h/Ω1/3 of all studied droplets plot-

ted as a function of the reduced radii of the fibers r/Ω1/3,
on which the droplets are migrating. The markers show the
experimental data for all droplets. Different colors for the
markers represent viscosities: 1000 cSt (orange), 2000 cSt
(purple) and 5000 cSt (green); different shades of a color
correspond to different fibers. The solid black line represents
the theoretical relationship between h/Ω1/3 and r/Ω1/3, as
derived by Carroll [17,18] with no fitting parameters. The
inset in the image shows the experimental data, the theo-
retical relationship and the dashed black line of equation
h = r show that the predicted h tends towards r for large
fiber radii on a larger scale compared to the main figure

towards r as the droplet flattens and takes the shape of
a cylinder enveloping the fiber. For small r, h is close
to that of a droplet in a quasi-spherical regime, where
h/Ω1/3 ≈ 0.62 as r → 0 (a droplet can be approximated
as a sphere of radius h). Experimentally the parameters
in Eq. 5 can all be determined easily. η and γ are known
fluid properties, and r and dr

dz are geometrical proper-
ties of the fiber which can be determined from image
analysis as discussed above (see Sect. 2). Lastly, since
the droplet height varies non-trivially with fiber radius,
we determine h experimentally at every image frame in
the sequence.

4 Results and discussions

We first turn to the height of the droplet on a fiber.
Since the droplet migrates, if we make the quasi-static
assumption (i.e., neglect fiber gradient and assume
v = 0), the experiment is equivalent to extracting the
height of a droplet as a function of fiber radius. The
experimental data are shown in Fig. 3, with markers
corresponding to the three different viscosities: 1000
cSt (orange), 2000 cSt (purple) and 5000 cSt (green);
different shades correspond to different conical fibers.
To the best of our knowledge, this relationship has not
been experimentally verified and the agreement with
the classic theory is excellent with no fitting parame-
ters. Although for small fiber radii h is close to that of

a droplet in a quasi-spherical regime, we do not make
the common approximation of h ∼ Ω1/3 in this study.

The droplet speed as a function of experimentally
relevant parameters is given by the model prediction
presented in Eq. 5. In Fig. 4a, we plot the speed, v,
as a function of h

r
dr
dz . The model predicts a straight

line through the origin with a slope proportional to γ
η .

Indeed, for all the experiments (52 in total), the experi-
mental data are in excellent agreement with the simple
model despite the approximations made (see [16] for
a more rigorous theory and simulation). The droplets
follow three different trends corresponding to the three
different viscosities: 1000 cSt (orange markers), 2000
cSt (purple markers) and 5000 cSt (green markers). For
each viscosity, three different fibers of varying radii and
gradients were used to diversify the experimental condi-
tions. They correspond to different colors shades of the
markers. On each single fiber, several droplets migra-
tions (6 on average) were recorded once the fiber was
pre-wet. In Fig. 4a, each different type of marker (circle,
square, etc.) corresponds to a different droplet. Accord-
ing to Eq. 5, these straight lines have slopes that are
inversely proportional to the respective viscosities of
the fluids but otherwise have the same prefactor. The
prefactor itself is the result of the multiplication of the
surface tension γ (the same for the three oils that were
used) and a numerical coefficient of order of 10−1.

The comparison between model and data can be
tested further by dividing the speed by the capillary
velocity of the oil γ/η, which normalizes the data by
the corresponding viscosities. The expectation is then
to obtain a single trend for all droplets, in this case a
straight line going through the origin with a slope equal
to the prefactor discussed earlier: a numerical prefactor
which we find to be equal to 0.074±0.002 by fitting the
data. We see in Fig. 4b that all data collapse in agree-
ment with Eq. 5. The agreement between the data and
the model further demonstrates the robustness of the
model.

Limitations of the model approximations could be
observed in the experiments. For instance, when the
droplet continues to migrate towards the larger end of
the fiber, there is a point where the droplet becomes
asymmetric which results in a deviation of the data
from the expected straight line when plotted as shown
in Fig. 4b. Failure of the model can also be observed
for droplets with extreme volumes when the volume is
sufficiently large and gravity cannot be neglected. This
deviation happens when the characteristic dimension of
the droplet is comparable to the capillary length of the
liquid.

A further interesting observation can be made about
the first droplets to migrate on each fiber. In that case,
the droplets are moving on fiber that has not been pre-
wet. The resulting data for these droplets are still found
to collapse onto a straight line going through the ori-
gin when plotted as shown in the inset in Fig. 4b. The
only difference is that the slope of this line is smaller
than the slope of the wet fiber data by a factor of
approximately 4. The altered dynamics is reasonable
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Fig. 4 a Speed for all studied droplets as a function of
the gradient of their respective fibers multiplied by their
height and divided by their radii, dr

dz
h
r
. Different color fam-

ilies represent the viscosity of the PDMS: 1000 cSt (orange
markers), 2000 cSt (purple markers) and 5000 cSt (green
markers). Different color shades denote different fibers (3
different fibers for each viscosity). Different types of mark-
ers (circle, square, etc.) denote different droplets. The lines
represent the best fit of the model (Eq. 5) for each viscosity.
The best fit lines have slopes of aγ/η, where a was found
to be ∼ 0.074 ± 0.002. b Speed normalized by the capillary
velocity for all studied droplets as a function of dr

dz
h
r
. The

color scheme is the same as in a. The straight line represents
the best fit of the model to all data with the best fit slope of
∼ 0.074 ± 0.002. The inset includes the data from the main
panel and the speed normalized by the capillary velocity for
droplets on a dry fiber as a function of dr

dz
h
r
. The best fit

slope for the data on a dry cone is ∼ 0.018 ± 0.003

because in the absence of a pre-wetting film there is
greater viscous dissipation at the advancing contact
line, and furthermore, one can expect a modification
to the driving force depicted in Fig. 1b. Images of such
droplets in motion reveal a cusp at the contact line and
an advancing angle that deviates significantly from the
receding angle, unlike the case of droplets moving on
a pre-wet fiber. Regardless, the deviation results in a
constant pre-factor so that the overall scaling remains
unchanged.

The work presented here differs from the experiments
presented by Lorenceau and Quéré [26] and the work by
Li and Thoroddsen [33] in several ways. First, in our
experiments, gravity is negligible because we consider
droplets with characteristic sizes smaller than the cap-
illary length, while Lorenceau and Quéré studied larger
droplets. Second, here we focus on a broad range of
relative droplet sizes in the quasi-spherical regime. In
contrast, Lorenceau and Quéré focus on experimental
results in the quasi-cylindrical regime. Third, our theo-
retical model differs from the model built by Lorenceau
and Quéré and used by Li and Thoroddsen. While we
also predict the droplet speed using a balance of both
the viscous dissipation and the driving force, we use a

different approximation for the dissipation and define
our driving force through the tensions at the contact
line. Lastly, in previous works by Lorenceau and Quéré
as well as Li and Thoroddsen, experimental data are
provided as evidence for the models. Just as for the
model presented here, the authors predict a direct pro-
portionality between the speed as a function of fiber
gradient with a speed that vanishes as the gradient
tends to zero. In both studies [26,33] when comparing
data to the theory, the data are consistent with a linear
dependence of speed on the fiber gradient, but incon-
sistent with the prediction that the speed must vanish
when the gradient vanishes (i.e., the best fit lines do
not go through the origin and predict a nonzero veloc-
ity when there is no gradient). We have resolved this
inconsistency with our model and data.

5 Conclusions

In this work, the spontaneous migration of a droplet
on a fiber with a radius gradient has been character-
ized. If gravity and inertia are negligible, the speed
of the droplet can be predicted as a function of the
other parameters of the system. These parameters are
geometrical (radius and gradient of the fiber, droplet
height) and fluid characteristics (viscosity, surface ten-
sion). The predicted speed of droplet migration is based
on a simple theoretical model in which the viscous shear
force on the droplet balances the surface tension driv-
ing force. We find a good agreement between this model
and the experiments that were performed using vari-
ous fiber shapes and droplet volumes. We further val-
idate the non-monotonic dependence of droplet height
on fiber radius. One could imagine using the model as
a way to improve future fog harvesting devices inspired
by this spontaneous droplet migration mechanism often
seen in biological systems.
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