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When a rigid object approaches a soft material
in a viscous fluid, hydrodynamic stresses arise
in the lubricated contact region and deform the
soft material. The elastic deformation modifies in
turn the flow, hence generating a soft-lubrication
coupling. Moreover, soft elastomers and gels are
often porous. These materials may be filled with
solvent or uncrosslinked polymer chains, and might
be permeable to the surrounding fluid, which further
complexifies the description. Here, we derive the
point-force response of a semi-infinite and permeable
poroelastic substrate. Then, we use this fundamental
solution in order to address the specific poroelastic
lubrication coupling associated with contactless
colloidal-probe methods. In particular, we derive
the conservative and dissipative components of the
force associated with the oscillating vertical motion
of a sphere close to the poroelastic substrate. Our
results may be relevant for dynamic surface force
apparatus and contactless colloidal-probe atomic
force microscopy experiments on soft, living and/or
fragile materials, such as swollen hydrogels and
biological membranes.
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1. Introduction
Modern synthesis techniques and observation methods at small scales have fostered intense
research activity on soft materials and their interfaces [1]. Many of these materials are elastomers
and gels, deform considerably under small stress, and are commonly found in biological and
technological systems. Stimuli-responsive hydrogels, for example, are candidate materials in
novel devices for the detection of diseases by isolation of cells [2]. Elastomers and gels are
typically made of synthetic or natural polymers that are crossed-linked to form a network. When
immersed in a favourable solvent, the polymer matrix swells as described by Flory–Huggins
theory [3,4]. For such gels, the material may eventually contain a large proportion of solvent
molecules with a volume increase up to a factor five, for example [5], or more.

Solvent molecules inside a gel can diffuse through the inter-chain regions of the polymer
matrix. Therefore, when a load is applied to a gel, material deformations are time-dependent.
This dynamic response arises since the chains are restrained from unbounded displacements by
elasticity while the solvent motion implies viscous dissipation. The latter mechanism is called
poroelasticity, which has been extensively used to describe the mechanical properties of gels. The
first poroelastic theory was introduced by Biot to model the consolidation of soils [6]. Since then,
additional features have been added such as nonlinear elasticity [7,8], viscoelasticity [9] or surface
stresses [10–12], and instabilities have been considered [13]. Notably, the mechanical response of
a gel depends on the interactions between the gel and its environment. If the gel is indented by
a rigid object, as in the emblematic example of contact mechanics [14–19], solvent molecules do
not flow across the interface between the gel and the indenter, which is thus impermeable. By
contrast, if the gel is immersed in its own solvent, then the solvent molecules can be transported
across the gel–solvent interface, which is thus permeable. In the case of a spherical indenter
in contact with the probed gel, impermeability should be considered in the central contact
region while permeability should be considered in the coronal, contact-free region around the
indenter.

In addition to the permeability boundary condition above, when a rigid object moves in
a viscous fluid near a soft surface, it generates hydrodynamic stresses [20] that, despite the
lack of direct contact, may deform the soft surface. In turn, the deformation of the soft surface
modifies the flow which generates so-called soft-lubrication couplings, that are at the heart of the
recent development of gentle, contactless rheological methods for soft materials [21–29]. These
methods have been employed to measure the rheology of diverse surfaces such as elastomers
[30], gels [31,32], glasses [33], living cells [34] and liquid–air interfaces with impurities [35,36].
They typically involve colloidal-probe atomic force microscopy [37,38], dynamical surface force
apparati [39–41] or tuning-fork microscopes [42]. The underlying principle involves driving a
spherical probe near a soft surface of interest (see figure 1b), and to combine the measured force
and the soft-lubrication model in order to infer the material rheology.

Another interesting aspect of soft-lubrication couplings is the emergence of inertial-like forces
at zero Reynolds number, such as the lift force for transverse driving [43–52]. As a direct
consequence, the effective friction between two objects in respective sliding motion can be
strongly reduced [53–56], as compared to the classical rigid lubrication case. This might have
important practical implications, in physiology for instance, since the friction between bones in
mammalian joints [57,58] may be strongly reduced through the presence of poroelastic cartilages
between the solid bones and the synovial lubricant. In the same way, the wet contact between the
eyelid and the eyeball is complemented by a stratification of polymer-like and gel-like layers, that
may offer better sliding when blinking [59].

Despite the above interest in soft materials and their rheology measured from contactless
methods, it is interesting to realize that only simple linear elastic-like constitutive responses have
been addressed in the context of soft-lubrication theory. While the effects of viscoelasticity have
been recently investigated in more detail [60–62], the effects of poroelasticity remain scarcely
and partially addressed [63–65] and certainly at a too basic level to address the more complex
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Figure 1. Semi-infinite permeable poroelastic medium deformed by two different external axisymmetric pressure fields. (a)
A point-force pressure field P(r, t)= F0δ(r) is suddenly applied at t = 0 on the poroelastic substrate, and generates a surface
deformationw(r, t). The latter is directly related to the Green’s functionG(r, t).We denoteG,ν and k, the effective shear elastic
modulus, effective Poisson ratio and porosity of the substrate, respectively, aswell asη the viscosity of the solvent flowing in the
porousmaterial. (b) In contactless colloidal-probe rheologicalmethods, amicrometric sphere is oscillating at angular frequency
ω normally to the substrate in a liquid (identical to the solvent in the gel here) of dynamic shear viscosityη and densityρ . The
hydrodynamic lubrication pressure field P(r, t) generated by the associated flow deforms the gel surface, leading to a deformed
liquid-gap profile h(r, t).

and subtle responses of nonlinear functionalized materials [66]. Early works on purely porous
substrates suggest an equivalent description involving effective slippage at the interface, with
either the slip length considered to be on the order of the pore size [67], or a full slip boundary
condition [68], while more recent work suggests a key role of the permeability boundary
conditions [69].

In this article, in view of the identified gap in the literature noted above, we derive a model
to characterize the mechanical response of thick poroelastic gels in the framework of contactless
colloidal-probe rheological methods. Since we are interested in describing gels in contact with
a reservoir of solvent, a full permeability boundary condition at the gel–solvent interface is
considered. Our focus contrasts with a previous study in the impermeable case [10,70], that is
more relevant to methods involving direct solid contact. In the first part, we obtain the surface
deformation of a semi-infinite, permeable, poroelastic layer under the action of an arbitrary
pressure field. We use the formalism of Green’s functions in axisymmetric conditions, as was
done for purely elastic media in the context of soft lubrication [24,25,29,71,72], or for a poroelastic
but impermeable soft substrate [10]. In the second part, we apply this formalism to the canonical
situation for contactless colloidal-probe rheology, namely the soft-lubricated motion of a sphere
oscillating vertically near a poroelastic gel, and we characterize the substrate deformation and
resulting normal force in detail.

2. Mechanical response to an external pressure field

(a) Linear poroelastic theory
The considered system is shown in figure 1a. It consists of a gel that occupies the half-space
defined by z ≤ 0. We suppose that the mechanics of the gel is described by the linear poroelastic
theory. As mentioned in the introduction, this model was first established by Biot [6], and was
adapted to model the migration of solvent in elastomeric gels [10,15,70]. We take as a reference
state a swollen gel, with a homogeneous solvent concentration c0, and where the chemical
potential of the solvent inside the gel is μ0. The elastic deformation of the gel is characterized by
the strain tensor ε. The latter is defined as the symmetric part of the displacement field gradient
tensor, as

ε = 1
2

[∇u + (∇u)T], (2.1)
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where u denotes the displacement field with respect to the reference state. The solvent mass being
conserved, the molar concentration c satisfies the continuity equation:

∂c
∂t

+ ∇ · J = 0, (2.2)

where the flux of solvent inside the gel is denoted J. The linear poroelastic theory assumes that
the solvent flow is driven by the gradient of solvent chemical potential μ, through the Darcy law:

J = −
(

k
ηΩ2

)
∇μ. (2.3)

Here, η and Ω are the viscosity and molecular volume of the solvent, respectively, and k is the
permeability that is on the order of the pore surface area of the swollen polymeric network—
but with a prefactor depending on the specific network architecture. The solvent and the polymer
network are both supposed to be incompressible. As a consequence, the local variations of volume
of the polymer network are due to the local changes in solvent concentration, which sets the
condition:

Tr(ε) = ∇ · u = (c − c0)Ω , (2.4)

where Tr is the trace. As discussed in [17], we expect that the free energy density U of the gel
is a function of the strain tensor and the concentration field. The work done on a gel element is
given by δU = σijδεij + (μ − μ0)δc, where σ is the mechanical stress tensor. Nevertheless, because
of the incompressibility condition in equation (2.4), the solvent concentration is no longer an
independent variable, and the free energy density only depends on strain. The latter is supposed
to follow the standard linear-elastic energy density, i.e. U = G[ε : ε + (ν/(1 − 2ν))Tr2(ε)], where G
and ν are the effective shear elastic modulus and Poisson ratio at equilibrium, respectively. The
stress tensor is then given by [17]

σ = 2G
[
ε + ν

1 − 2ν
Tr(ε)I

]
− μ − μ0

Ω
I, (2.5)

where I is the identity tensor. The difference in chemical potentials per molecular volume
appears as a hydrostatic pressure, often called pore pressure, and is obtained by enforcing
the incompressibility condition with a Lagrange multiplier. In the absence of body force, the
mechanical equilibrium is expressed by Navier’s closure equation:

∇ · σ = 0. (2.6)

Combining the two last equations leads to:

GΩ

(
∇2u + Ω

1 − 2ν
∇(c − c0)

)
= ∇(μ − μ0). (2.7)

Invoking equation (2.3), equations (2.2), (2.4) and (2.7) form a closed system of five equations for
the five fields μ, c and the three components of u. Combining the latter equations reduces the
problem to a set of two coupled equations on the concentration field c and chemical potential μ,
as

∇2
[

(μ − μ0) − 2GΩ2 1 − ν

1 − 2ν
(c − c0)

]
= 0 (2.8a)

and
∂c
∂t

=Dpe∇2c, (2.8b)

where we have introduced an effective, poroelastic diffusion coefficient

Dpe = 2(1 − ν)
1 − 2ν

Gk
η

. (2.9)

Equation (2.8a) couples the chemical potential with the concentration, as the flow of solvent is
driven by gradients of chemical potential (or equivalently, gradients of pore pressure). Equation
(2.8b) describes the diffusion of solvent through the porous matrix, with Dpe of equation (2.9)
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constructed using macroscopic material parameters. An osmotic modulus, 2(1 − ν)/(1 − 2ν),
arises in the expression of the diffusion coefficient Dpe. We note lastly, however, that even
while Dpe is constructed from these macroscopic parameters, one can recover a molecular-
scale diffusion coefficient. To make the correspondence, we use the Stokes–Einstein relation for
molecular diffusion, Dμ ∼ kBT/(ηa), with kBT and a ≈ Ω1/3 the thermal energy and monomer
size, respectively. Estimating furthermore the typical polymeric modulus G ∼ kBT/(Na3), and
the permeability k ∼ Na2, where N is a typical number of monomers between crosslinks in the
network, we find Dpe ∼Dμ upon substitution into equation (2.9).

(b) Point-force driving
We now derive the response of the gel to a spatially delta-distributed force density applied to
the surface of the gel. Prior to the application of such a force, i.e. for times t ≤ 0, we suppose that
the gel is in the (swollen) reference state with strain- and stress-free conditions. For t ≥ 0, a point-
force pressure source of magnitude F0 is suddenly applied on the surface. This forcing drives a
deformation of the gel surface, and solvent flow within the polymer matrix. At the interface (i.e.
z = 0 in the reference state), the stress boundary condition is, therefore, given by

σ · ez = −F0δ(r)H(t)ez, (2.10)

where H(t) denotes the Heaviside step function and δ(r) the Dirac distribution.
In the limit z → −∞, the stress and strain fields vanish and the solvent concentration field

reaches its reference equilibrium value c0. At infinitesimally small times after the point force has
been applied, the solvent did not have time to flow, so that the solvent concentration is the same
as the one at t < 0, i.e.:

c(r, z, t = 0) = c0. (2.11)

We suppose that the gel is in contact with a reservoir of solvent molecules, which sets the surface
chemical potential to the reference equilibrium value μ0. Such a permeability condition allows for
solvent exchange between the gel and the outer reservoir, and is relevant to situations where the
gel is immersed in a liquid phase (e.g. its own solvent) with some affinity between the two. Thus,
the boundary condition on the chemical potential at the undeformed interface of the gel reads:

μ(r, z = 0, t) = μ0. (2.12)

(i) Resolution

To determine the surface deformation w(r, t) associated with the pressure source of equation (2.10)
(see figure 1a), we follow the method introduced by Liu et al. [11], McNamme & Gibson [73,74]
and Gibson et al. [75]. The key ingredient of that method is the introduction of two displacement
potentials A(r, z, t) and B(r, z, t), defined by

ur = z
∂A
∂r

+ ∂B
∂r

(2.13a)

and

uz = z
∂A
∂z

− A + ∂B
∂z

, (2.13b)

and that satisfy the following equations:

∇2A = 0, (2.14a)

∇2B = Ω(c − c0), (2.14b)

2GΩ
∂A
∂z

= (μ − μ0) − 2GΩ2 1 − ν

1 − 2ν
(c − c0) (2.14c)

and
∂∇2B

∂t
=Dpe∇4B. (2.14d)
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Substituting the strain tensor ε in equation (2.5), using equations (2.1) and (2.4), the stress tensor
σ can be written as a function of μ, c and u. Using then equations (2.13), (2.14b) and (2.14c), the
stress tensor can be expressed as a function of A and B, as

σrr = 2G

(
z
∂2A
∂r2 − ∂A

∂z
+ ∂2B

∂r2 − �B

)
, (2.15a)

σzz = 2G

(
z
∂2A
∂z2 − ∂A

∂z
+ ∂2B

∂z2 − �B

)
(2.15b)

and

σrz = 2G

(
∂2B
∂r∂z

+ z
∂2A
∂z∂r

)
. (2.15c)

We note that azimuthal stresses and displacements have not been considered here, given the
axisymmetry of the problem.

To solve equation (2.14b), we reconsider the problem in the spectral domain. Specifically, we
use the Hankel transform of zeroth order in space and the Laplace transform in time. In such a
framework, a given field X(r, t) is transformed into:

X̂(s, q) =
∫∞

0
dt e−qt

∫∞

0
dr X(r, t)rJ0(sr), (2.16)

where J0 is the Bessel function of the first kind and zeroth order. The inversion formula reads:

X(r, t) = 1
2π i

∫ γ+i∞

γ−i∞
dq eqt

∫∞

0
ds X̂(s, q)sJ0(sr), (2.17)

where the inverse Laplace transform is written using the Bromwich integral. Then, expressing
equation (2.14b) in the spectral domain and invoking the initial condition ∇2B(r, z, 0) = 0, we get
the following ordinary differential equations on the transformed potentials Â(s, z, q) and B̂(s, z, q):(

∂2

∂z2 − s2

)
Â = 0 (2.18)

and (
∂2

∂z2 − s2 − q
Dpe

)(
∂2

∂z2 − s2

)
B̂ = 0. (2.19)

The solutions to equations (2.18) and (2.19) that vanish at z → −∞ read:

Â = a1esz (2.20a)

and
B̂ = b1esz + b2ez

√
s2+q/Dpe , (2.20b)

where a1, b1, b2 are integration constants, that depend on the spectral variables s and q. Expressing
the stress and chemical-potential boundary conditions of equations (2.10) and (2.12) in terms of
the potentials, we obtain:

σ̂sz(s, z = 0, q) = 0 = −2Gs

[
b1s + b2

√
s2 + q

Dpe

]
, (2.21a)

σ̂zz(s, z = 0, q) = − F0

2πq
= 2G[−a1s + (b1 + b2)s2] (2.21b)

and

μ̂(s, z = 0, q) − μ̂0 = 0 = 2GΩ

[
1 − ν

1 − 2ν
b2

q
Dpe

+ a1s
]

. (2.21c)

Solving equations (2.21), we obtain a1, b1 and b2.
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(ii) Results and discussion

Having solved the poroelastic problem equations (2.8)–(2.12) for the potentials A, B defined in
the previous section, we find the surface normal deformation of the gel ŵ(s, q) = −ûz(s, z = 0, q) in
reciprocal space (see equation (2.16)) by invoking equation (2.13b), as

ŵ(s, q) = F0

4πGsq
1

1 + Λ(Dpes2/q)(1 −
√

1 + (q/Dpes2))
, (2.22)

where the Poisson ratio appears in the compressiblity factor

Λ = 1 − 2ν

1 − ν
. (2.23)

We first note that if the gel is nearly incompressible, i.e. as ν → 1/2, then Λ → 0 and the
poroelasticity does not affect the surface deformation as revealed in equation (2.22). In such a
case, the poroelastic medium responds as a purely elastic and incompressible one, at all times.
Similarly, if the permeability is small, i.e. as k → 0, the diffusion constant Dpe of the solvent
vanishes and the medium again behaves as an incompressible elastic material. In the opposite
limit of large permeability, the solvent can diffuse almost instantaneously and the stress is
immediately relaxed, so that the response is one of a compressible elastic material at all times.

In figure 2a is shown ŵ(s, q) plotted as a function of s for various q. We choose a value ν = 0.1, a
typical value for swollen gels and giving finite Λ. The vertical normalization is chosen such that
dimensionless values of s and q were used, length is normalized by

√
F0/G and time by F0/(GDpe).

The results show parallel power-law decays in the small- and large-s limits, with a larger prefactor
for large s (small distance). To explain this observation, we explore the temporal asymptotics of
the governing equation (2.22). The initial and final value theorems can be used in the short- and
long-time limits of the surface deformation. We thus find:

ŵ(s, t = 0+) = lim
q→∞ qŵ(s, q) = F0

4πGs
(2.24a)

and

ŵ(s, t → ∞) = lim
q→0+

qŵ(s, q) = F0(1 − ν)
2πGs

, (2.24b)

leading to the deformation in real space:

w(r, t = 0+) = F0

4πGr
= wincomp(r), (2.25a)

and

w(r, t → ∞) = F0(1 − ν)
2πGr

= wcomp(r). (2.25b)

Thus for both short and long times, we find spectral power-law decays of the surface deformation.
The former expression is the point-force solution of a purely elastic, incompressible and semi-
infinite medium of shear modulus G, denoted wincomp(r). At long times, we have the point-force
solution of a purely elastic and semi-infinite medium of shear modulus G and Poisson ratio ν,
denoted wcomp(r). Equations (2.24) are plotted using dashed lines in figure 2a. These expressions
thus form a link between poroelastic and elastic materials [45,76]: at large distances (small s),
the solvent has no time to flow inside the porous matrix and the response is elastic-like, with an
incompressibility condition due to the liquid fraction. At small distances (large s), the solvent does
not flow anymore and the response recovers a steady elastic deformation, with compression (i.e.
a concentration change) as compared to the initial state. In between the two asymptotic regimes,
the surface deformation smoothly changes from the short-time (incompressible) to the long-time
(compressible) elastic-like behaviours, as shown with blue lines and using finite q in figure 2a.

To connect the asymptotic inverse space and time responses, we note in equation (2.22) that at
fixed Λ, a natural variable is an inverse, dimensionless diffusive one Dpes2/q. This is expected
since the solvent concentration follows a diffusive-like law with a diffusion constant Dpe. In
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Figure 2. Surface deformation inducedby apoint-force pressure source inHankel–Laplace space. (a) Dimensionless, reciprocal-
space surface deformation ŵ(s, q) as computed from equation (2.22), as a function of the scaled spatial frequency, s, for various
temporal frequencies, q, normalized byDpeG/F0, using ν = 0.1. The orange and red dashed lines correspond to equations
(2.24a) and (2.24b), respectively. (b) Normalized surface deformation in reciprocal space ŵ(s, q), as a function of the variable
Dpes2/q, for ν = 0.1, as computed from equation (2.22). The orange and red dashed lines as described in (a).

figure 2b, we thus plot the normalized surface deformation in reciprocal space, as a function of the
normalized diffusive variable, having fixed the Poisson ratio and for the same q noted in figure 2b.
Given the normalization and the form of equation (2.22), we find that a single curve describes the
response in reciprocal space. Interpreting the response physically, we note that when the gel starts
to be indented, it first exhibits an incompressible elastic-like response, as discussed above. Later,
at a given time t, the solvent and stress have typically diffused over a radial distance rc ∼√Dpet,
giving a self-similar curve in reciprocal space.

To have a direct view on the spatial and temporal relaxations described above for reciprocal
space, the inverse Laplace transform of equation (2.22) was numerically computed using the
Talbot algorithm [77]. The inverse Hankel transform was computed with Riemann summation
over a finite spectral domain. Numerical oscillations were first reduced by increasing the domain
size and reducing the space step, in the limit of a reasonable computational time. Residual
oscillations were then smoothed using a Savitzky–Golay filter of order 3 on a window of 9 points
over the total 200 000 used in the linear discretization of the r, s axes. The results are presented in
figure 3a, where the deformation in real space is plotted as a function of the radial coordinate for
various times. For r < rc noted in the previous paragraph, the gel state has essentially relaxed
and the response is compressible (red dashed line), while for r > rc the state and response
are not modified with respect to the initial, incompressible elastic ones (orange dashed line).
The transitions between compressible and incompressible deformations are also elucidated in
the logarithmic representation of the data shown in the inset, where the short- and long-time
asymptotic relaxations are shown.

In figure 3b, we quantitatively show the gel’s relaxation to its final state, plotting the difference
of the data in figure 3a with that of the asymptotic late-time limit in equation (2.25b) as a function
of the radial coordinate. A continuous decay toward the late-time value is observed for all radii.
Taking a few examples, we show in the inset of figure 3b the temporal decay toward the final
state for the three radii noted by vertical dashed lines in the main part of the figure. For early
times, we note a plateau at a value F0(1 − 2ν)/(4πG), corresponding to the difference between
the two asymptotic limits in equation (2.25). Remarkably, a temporal power law with exponent
−1/2, characteristic of a diffusive process, is reached for all the radii at long times. In appendix A,
the late-time t−1/2 asymptotic power-law decay is demonstrated by expanding equation (2.22) at
small q and transforming to real space. The intercept between the asymptotic decay law and the
initial plateau value indicates its typical duration time, that scales with the diffusion time r2/Dpe.

Lastly, we note that in appendix B we compare the results of the present permeable description
to the case of an impermeable surface. For the impermeable case, the solvent flux vanishes at the
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Figure 3. Surface deformation induced by a point-force pressure source. (a) Normalized surface deformation as a function
of the radial coordinate, for the times noted in the legend, as computed from the inverse transform of equation (2.22) and
using ν = 0.1. The orange and red dashed lines correspond to the asymptotic limits in equations (2.25). The inset shows the
same data on logarithmic scales. (b) Differencewcomp(r) − w(r, t) (normalized) between the surface deformation of a purely
elastic compressible material (see equation (2.25b)) and the one of the poroelastic material, as a function of normalized radial
coordinate, for the dimensionless times noted in the legend. The inset shows the same data, but as a function of time and for
various radial positions (corresponding to the vertical dashed green lines in themain panel), using logarithmic scales. The−1/2
exponent of the asymptotic power-law behaviour is discussed in appendix A.

interface. This alternative boundary condition is relevant when the gel is not in contact with its
own liquid solvent. Such a situation arises when a gel is indented by a rigid object [14–19], as well
as in some configurations of soft wetting [10,78]. The surface deformations are found to adopt
qualitatively similar shapes in the permeable and impermeable cases. However, the respective
behaviours quantitatively differ, and the stress relaxation is in particular faster in the permeable
case, due to the allowed exchange of solvent with the outer reservoir.

(c) Solution for an arbitrary pressure field
In real systems, gels are indented with probes that have finite size [16–19]. In these cases,
the external load is not a point force, and the outer pressure field has a finite spatial extent.
Additionally, the outer pressure field may exhibit temporal variations. Since the above model
only involves linear operators, we can apply the superposition principle. Henceforth, the surface
deformation generated by an arbitrary time-dependent and space-dependent pressure field p(r, t)
is given by the convolution:

w(r, t) =
∫ t

−∞
dt′

∫
R2

d2r′ G(|r − r′|, t − t′) p(r′, t′), (2.26)

where G is the Green’s function of the problem, which is the surface deformation induced by a
point force δ(r)δ(t). The latter is directly related to equation (2.22), through:

Ĝ(s, q) = 1
4πGs

1

1 + Λ
Dpes2

q (1 −
√

1 + (q/Dpes2))
, (2.27)

and the inverse transform:

G(r, t) = 1
2iπ

∫ γ+i∞

γ−i∞
dq eqt

∫∞

0
ds Ĝ(s, q)sJ0(sr). (2.28)
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3. Application to contactless colloidal-probe rheology
In this section, we apply the general results of the previous one for a specific outer pressure field
that is relevant to contactless colloidal-probe rheological methods. Specifically, we focus on the
elastohydrodynamic coupling between a rigid sphere of radius R and a semi-infinite permeable
poroelastic medium. For this purpose, we invoke the linear-response theory introduced by
Leroy & Charlaix [22], and widely used in contactless measurements of the mechanical properties
of soft surfaces [30–34,36,42].

(a) Soft-lubrication approximation
The above-mentioned sphere is placed at a distance D from the undeformed gel surface and
oscillates vertically with angular frequency ω and amplitude h0, as schematized in figure 1b.
The ensemble is fully immersed in a Newtonian fluid (identical to the solvent in the gel here) of
dynamic shear viscosity η and density ρ. We suppose that the sphere-plane distance is small with
respect to the sphere radius, and can thus invoke the lubrication approximation [20]. The sphere
profile can be approximated by a parabola in the lubricated contact region, and the liquid-film
thickness profile is thus given by

h(r, t) � D + h0 cos(ωt) + w(r, t) + r2

2R
. (3.1)

The Reynolds number is assumed to be small, so that the flow is laminar. Furthermore, we
suppose that the typical viscous penetration depth

√
η/(ρω) is large compared to the liquid-

gap thickness. Therefore, the flow can be described by the steady Stokes equations with no-slip
boundary conditions at both the sphere and gel surfaces. This latter condition is assumed for
simplicity since the typical slip length at poroelastic surfaces is comparable to the pore size ∼ √

k
[67,69], which is normally nanometric.

The liquid-film thickness profile follows the axisymmetric thin-film equation [79]:

∂h
∂t

= 1
12ηr

∂

∂r

[
rh3 ∂p

∂r

]
, (3.2)

where p is the excess pressure field in the liquid with respect to the atmospheric pressure. In the
lubrication approximation, the viscous shear stresses are negligible compared to the pressure.
Therefore, the force balance at the gel surface takes the same form as in §2, and the surface
deformation profile can be computed from equation (2.26).

(b) Linear-response theory
Following [22], we suppose that the oscillation amplitude is much smaller than the liquid-gap
thickness. Hence, we invoke the linear-response theory, and write the fields as

w(r, t) = Re[w∗(r)eiωt], p(r, t) = Re[p∗(r)eiωt], (3.3)

where ∗ indicates complex variables, i2 = −1, and Re is the real part. Equation (3.2) is then
linearized, giving:

iω
(

h0 + w∗
)

= 1
12ηr

d
dr

[
r
(

D + r2

2R

)3 dp∗

dr

]
. (3.4)

Using the solution derived in §2c, we can obtain the surface deformation by injecting equation
(3.3) into equation (2.26). The amplitude of the surface deformation in Hankel space reads:

ŵ∗(s) = p̂∗(s)Ĝ∗(s) = p̂∗(s)
2Gs

1

1 − iΛ(Dpes2/ω)
(

1 −
√

1 + (iω/Dpes2)
) , (3.5)
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with:

ŵ∗(s) =
∫∞

0
dr w∗(r)r J0(sr) and p̂∗(s) =

∫∞

0
dr p∗(r)r J0(sr). (3.6)

Note that, in contrast to §2, the ˆ symbol now only refers to the Hankel transform, since there
is no time dependence on the amplitudes and thus no Laplace transform. From equation (3.1),
the contact length

√
2RD—i.e. the so-called hydrodynamic radius—sets a typical horizontal

length scale. Besides, h0 sets a typical vertical length scale. Thus, we introduce the following
dimensionless variables:

r̃ = r√
2RD

, s̃ = s
√

2RD, w̃∗(r̃) = w∗(r)
h0

. (3.7)

From the horizontal projection of the Stokes equation, and the incompressibility condition, we
find that the typical lubrication pressure scale is 2ηRωh0/D2. Thus, we introduce the following
dimensionless pressure field:

p̃∗(r̃) = D2p∗(r)
2ωRηh0

. (3.8)

Injecting these new variables in equation (3.2), the dimensionless thin-film equation results:

i(1 + w̃∗) = 1
12r̃

d
dr̃

[
r̃
(

1 + r̃2
)3 dp̃∗

dr̃

]
. (3.9)

Finally, we introduce two characteristic parameters. First, the critical distance at which the surface
deformation and sphere oscillation amplitude are of the same order:

Dc = 8R

(
ηω

2G

)2/3

. (3.10)

Second, the critical poroelastic angular frequency at which solvent typically diffuses over the
contact length at the critical distance during one oscillation:

ωc = Dpe

2RDc
= Dpe

16R2

(
2G
ηω

)2/3

. (3.11)

(c) Deformation profile and normal force
Using the dimensionless variables and critical parameters above, we can write equation (3.5) in
dimensionless form, as

ˆ̃w∗(s) =
ˆ̃p∗(s)
8s

(Dc/D)3/2

1 − iΛ(s̃2/(ωD/(ωcDc)))
(

1 −
√

1 + (iωD/(ωcDc))/s̃2
) . (3.12)

Moreover, the amplitude F∗ of the vertical elastohydrodynamic force exerted on the sphere is
obtained by integrating the amplitude of the lubrication pressure field over the surface, as

F∗ = 2π

∫∞

0
dr r p∗(r) = 8πηωh0R2

Dc
F̃∗, with F̃∗ = Dc

D

∫∞

0
dr̃ r̃ p̃∗(r̃), (3.13)

where we have noted the dimensionless force F̃∗, which depends on the dimensionless
parameters, D/Dc, ω/ωc and Λ.

Equations (3.9) and (3.12) can be solved numerically, as detailed in appendix C. Examples of the
obtained surface deformation field are plotted in figure 4a for various sphere-substrate distances.
In a contactless colloidal-probe rheological experiment; however, it is not the deformation
amplitude that is typically measured. Rather, the sampled surface slowly approaches the
oscillating spherical probe using a piezo stage, with the typical experimental outputs being the
measured force amplitude and phase as functions of the sphere-substrate distance. The other
parameters are kept constant. From the amplitude and phase, the real and imaginary components
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Figure 4. Mechanical response of a poroelastic gel in the contactless colloidal-probe configuration. (a) Normalized amplitude
w∗/h0 of the surface deformationprofile as a function of the rescaled radial coordinate r/

√
2RD, for various normalized sphere-

substrate distances, as computed from equation (3.12) with ω/ωc = 1 and ν = 0.1. (b) Real (pink) and imaginary (green)
parts of the normalized force F∗Dc/(8πηωh0R2) exerted on the spherical probe as functions of normalized sphere-substrate
distance, for various reduced angular frequenciesω/ωc, as computed from equation (3.13) with ν = 0.1. The vertical dashed
blue lines correspond to the distances at which the surface deformation profiles are plotted in (a). The zoomed inset shows in
addition the purely elastic incompressible case (orange) and the purely elastic compressible case (red).

of the complex force can be evaluated. These force components can be evaluated theoretically
using equation (3.13), while the amplitude of the pressure field can also be obtained numerically.

Therefore, in figure 4b, we plot the dimensionless force amplitudes as a function of the
dimensionless distance, for various oscillation angular frequencies. Two regimes can be observed.
At large distance, i.e. D/Dc  1, the surface deformation is small with respect to the oscillation
amplitude (see figure 4a). As a result, the elastohydrodynamic coupling is weak, and the force
is dominated by the viscous dissipation in the liquid film. In the far-field asymptotic regime,
we recover the classical lubrication Stokes drag F∗ = −6iπηR2h0ω/D, which can be obtained by
integrating equation (3.2) in the absence of substrate deformation. The real part of the force
amplitude in the far field is much smaller than the imaginary part, but it displays a signature of
the elasticity of the substrate through an asymptotic decay with the distance as ∼ (D/Dc)−5/2. The
exact prefactor of this scaling law can be obtained by expanding the solution in (Dc/D) [22,36]. At
small distance, i.e. D/Dc � 1, the substrate deformation saturates and scales with the oscillation
amplitude (see figure 4a). As a consequence, the real and imaginary parts of the force amplitude
saturate as well to values that do not depend on the distance. Besides, at all distances (see e.g.
inset of figure 4b, at large distance), we recover the qualitative feature discussed in the previous
part: at small frequency, the elastohydrodynamic coupling is similar to that of a purely elastic
compressible layer; conversely, at large frequency, the elastohydrodynamic coupling is similar to
the one of a purely elastic incompressible layer.

Finally, in these rescaled variables, we observe a small influence of the solvent diffusion in the
gel on the elastohydrodynamic coupling, despite the diffusion constant being varied over 4 orders
of magnitude (via the critical frequency). Therefore, from our model, it appears that contactless
colloidal-probe rheological methods in the linear-response regime are not appropriate to robustly
measure the effects of the solvent diffusion through the gel network. By contrast, such methods
appear to be well suited for measuring the effective shear elastic moduli and Poisson ratios of
gels.

4. Conclusion
We theoretically addressed the mechanical response of a semi-infinite and permeable, linear
poroelastic substrate to an external axisymmetric pressure field. The point-force response was first
computed. By convolution of the latter to any outer pressure field, the surface deformation profile
can be computed. Motivated by the recent development of contactless colloidal-probe rheological
experiments on soft and complex materials, we applied our general results to the specific case
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of a sphere oscillating vertically near a gel, within an outer fluid identical to the solvent present
in the polymeric matrix. The complex amplitude of the force exerted on the spherical probe was
numerically computed and studied. As a result, contactless colloidal-probe methods in the linear-
response regime appear as good candidates to robustly measure the effective elastic properties
of gels and biological membranes, without risks of wear and adhesion. Going beyond linear
response, and incorporating large deformations as well as a polymeric description of the gel
architecture seem to be the next steps towards modelling further the complex response of gels
and measuring their specific poroelastic behaviours.
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Appendix A. Long-term asymptotic deformation
In order to rationalize the t−1/2 power law observed in the inset of figure 3b, the point-force
solution obtained in the main text, equation (2.22), can be expanded at small temporal frequency
q (or similarly at large time t), as

ŵ(s, q) ≈ F0

4πGsq
1

1 + ((1 − 2ν)/(1 − ν))(Dpes2/q)(1 − [1 + (1/2)(q/s2Dpe) − (1/8)(q/s2Dpe)2])

= F0(1 − ν)
2πGsq

1
1 + ((1 − 2ν)q/4Dpes2)

. (A 1)

Taking the inverse Laplace transform, we get:

ŵ(s, t) ≈ F0(1 − ν)
2πGs

[
1 − exp

(
−4Dpets2

1 − 2ν

)]
. (A 2)

Finally taking the inverse Hankel transform, we get:

w(r, t) = F0(1 − ν)
2πGr

⎡
⎣1 − r√

Dpet/π (1 − 2ν)
I0

(
− (1 − 2ν)r2

32Dpet

)
exp

(
− (1 − 2ν)r2

32Dpet

)⎤⎦

� F0(1 − ν)
2πGr

− F0(1 − ν)
√

(1 − 2ν)π
2πG

√
16Dpet

, (A 3)

where I0 is a modified Bessel function of the first kind, of order 0, and the last expansion is
obtained by taking the long-time limit. The first term of the right-hand side gives the purely
elastic and compressible response of the material at long time. The second term corresponds to
the long-term correction to the latter, as plotted in figure 3b. The decay does not depend on r and
scales as ∼ 1/

√Dpet, as recovered through the asymptotic −1/2 exponent in the inset of figure 3b.
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Figure 5. Comparison between the point-force solutions of the permeable and impermeable cases. (a) Normalized surface
deformation as a function of the radial coordinate at the noted time, using ν = 0.1. Shown are the point-force solutions for
permeable and impermeable boundary conditions, computed from the inverse transforms of equations (2.22) and (B 2). The
orange and red dashed lines correspond to the inverse transforms of equations (2.24a) and (2.24b). The inset shows the same
data on logarithmic scales. (b) Relative difference between the surface deformation in the permeable and impermeable cases,
as a function of the radial coordinate, for the noted dimensionless times. The inset shows the same data in semi-logarithmic
scale.

Appendix B. Point-force solution for an impermeable gel and comparison to the
permeable case

Here, we discuss the effect of surface permeability on the point-force response. In the model
presented in the main text, we assumed that the gel is in contact with a bath of its own solvent,
which fixes the chemical potential of the solvent at the surface to its reference value, at all times.
If the gel is in contact with another kind of medium (e.g. air, solid surface or immiscible liquid),
the description should be modified, and incorporate drying in particular. If one considers time
scales smaller than the drying time, we can neglect the solvent exchange at the interface. In that
case, we suppose the solvent flux vanishes at the surface, allowing us to impose the impermeable
boundary condition at z = 0:

J · n = ∂μ

∂z
= 0. (B 1)

We can use the same method as the one used in the main text, in order to derive the point-force
response:

ŵimper(s, q) = − 1
2Gsq

1

1 + Λ(Dpes2/q)
(

(1/(
√

1 + (q/s2Dpe))) − 1
) , (B 2)

where the superscript ‘imper’ stands for the impermeable condition. We thus recover the
solution derived in [10]. The diffusive-like self-similarity discussed in the main text also holds
here.

The point-force responses with impermeable and permeable boundary conditions are
compared in figure 5a. Both solutions appear to be qualitatively similar, and display the same
short-term and long-term behaviours. Nevertheless, at a given time t = 0.1F0/(GDpe), we observe
that the surface deformation in the impermeable case is smaller than the one in the permeable
case. Also, the permeable solution relaxes faster than the impermeable one towards the long-time
purely elastic compressible limit. Quantitatively, for a Poisson ratio ν = 0.1, we observe a relative
difference between the two solutions up to 35%, where the maximum difference is located at a
radial position ∼√Dpet, as shown in figure 5b.
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Appendix C. Numerical computation of the normal force
Here, we detail how equations (3.9), (3.12) and (3.13) are numerically solved. All variables
are dimensionless in this section for simplicity and the ˜ symbol is omitted. The normalized
deformation in reciprocal spaces reads according to equation (3.12):

ŵ∗(s) = p̂∗(s)
8

(
Dc

D

)3/2

Ĝ∗(s) with Ĝ∗(s) = 1
s

1

1 − iΛ s2

ωD/(ωcDc)

(
1 −

√
1 + ((iωD/(ωcDc))/s2)

) . (C 1)

By integrating equation (3.9) between 0 and r, and invoking equation (C 1), we obtain the
following equation for the pressure:

dp∗

dr
= 6ir

(1 + r2)3 + 3i
2(1 + r2)3

(
Dc

D

)3/2 ∫∞

0
ds J1(sr)Ĝ∗(s)p̂∗(s). (C 2)

Finally, by performing a first-order Hankel transform of the latter equation, we obtain the
Fredholm equation of the second kind:

p̂∗(s) = −3is
4

K1(s) − 3i
2

(
Dc

D

)3/2 ∫∞

0
dkĜ∗(k)p̂∗(k)

∫∞

0
dr

rJ1(kr)J1(sr)
s(1 + r2)3 , (C 3)

where Kn is the modified Bessel function of the second kind with index n. The kernel of the
Fredholm equation has an analytical solution [31], given by

∫∞

0
dr

rJ1(kr)J1(sr)
(1 + r2)3 = k2 + s2

8
I1(s)K1(k) − sk

I2(s)K2(k)
4

for s < k,

= k2 + s2

8
I1(k)K1(s) − sk

I2(k)K2(s)
4

for k < s, (C 4)

where In is the modified Bessel function of the first kind with index n. Integrals are numerically
evaluated with the Gauss–Legendre-quadrature method. The discretized version of equation (C 3)
is a linear algebraic problem and can be numerically solved. Finally, the dimensionless force can
be computed as in equation (3.13) by

F∗ = Dc

D
p̂∗(s = 0). (C 5)
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