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Microscopic foundation of the μ(I) rheology for dense granular flows on inclined planes
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Macroscopic and microscopic properties of dense granular layers flowing down inclined planes are obtained
from Discrete-Element-Method simulations for both frictionless and frictional grains. Three fundamental obser-
vations for dense granular flows are recovered, namely the occurrence of a critical stress, the Bagnold velocity
profile, as well as well-defined friction and dilatancy laws. The microscopic aspects of the grain motion highlight
the formation of transient clusters. From this microscopic picture, we derive a theoretical scaling model without
any empirical input that explains quantitatively the fundamental laws of dense granular flows in incline plane
and shear geometries. The adequacy between the model and the observed results suggests that granular flows
can be viewed as flows from thermal fluids of hard spheres.
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I. INTRODUCTION

Despite several decades of intense research, the mech-
anisms underlying dense granular flows remain largely
misunderstood. A universal framework allowing one to de-
scribe the numerous configurations and observations studied
in the laboratory is still lacking [1]. Most models remain
semiempirical and are not supported by strong microscopic
justifications [2–5]. The global flow properties are usually
described using the popular μ(I ) rheology. This approach
consists of two empirical relations between the macroscopic
friction coefficient μ (defined as the ratio between the shear
stress and the pressure) or the volume fraction φ on one hand,
and the inertial number I = γ̇ d

√
ρp/P on the other hand,

involving the shear rate γ̇ , the grain size d , the mass density
ρp ∼ m/d3 of the grains, their individual mass m, and the
pressure P [2,6]. Essentially, in this Amontons-Coulomb-like
description, a granular layer starts to flow when the applied
shear stress overcomes a critical frictional stress μcP. Nev-
ertheless, this description fails to properly rationalize some
important observable features, such as the presence of a
metastable region [7,8] and the layer-thickness dependence of
the angle at which the flow stops [9–12]. These last decades, it
has been shown that nonlocal/cooperative effects are manda-
tory to properly describe dense granular flows [13–20].

In this Letter, using a combination of Discrete-Element-
Method (DEM) simulations and a model based on micro-
scopic arguments, we address the rheology of dense granular
matter from the canonical setting of a layer flowing down an
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inclined plane. Therein, the inclination angle θ and the layer
thickness H are the two external control parameters. Previous
experimental and numerical studies have shown that the lo-
cal average velocity profile of a thick granular layer flowing
over an inclined plane exhibits a so-called Bagnold profile
[1,21,22], i.e., 〈v(z, t ) − v(0, t )〉 ∼ H3/2 − (H − z)3/2, where
v(z, t ) is the local velocity field along the flow direction, at
normal coordinate z and time t . Besides, it has been suggested
that nonlocal cooperative effects are essential to describe the
layer-thickness dependance of the stop angle [19,20], i.e., the
smallest angle for which a stationary flow is observed. We
will see here that the mechanical noise related to grain-grain
collisions determines an effective temperature. This concept
coupled to the formation of clusters appears to be a funda-
mental issue to derive a model for granular flow based on the
hard sphere fluid limit. The proposed model is able to predict
the size of dynamic clusters, the Bagnold velocity profile as
well as the two empirical relations, μ(I ) and φ(I ), commonly
used to fit experimental and numerical data [2,6].

II. METHODS

The numerical simulations were performed with the soft-
ware LIGGGHTS [23]. The system consists of a layer
of identical grains, with diameter d = 1 mm, mass m =
4
3πρpd3/8 and elastic modulus, E = 1 MPa, placed on an
inclined plane with an inclination angle θ [see Fig. 1(a)]. The
interactions between grains are described through a Hertz-
Mindlin model and a restitution coefficient equal to 0.5. We
focus here on thick-enough layers, in order to avoid the thick-
ness dependence of the stop angle observed for thin layers
[9–12]. The mechanical properties of the simulated grains are
set to be exactly the same as in our previous study [20], and
correspond to glass beads [9]. In particular, the microscopic
coefficients μs and μr of sliding and rolling frictions are set
to 0.5 and 0.01, respectively. In addition, frictionless grains
(i.e., μs=μr = 0) are also simulated. The influence of the
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FIG. 1. (a) Typical snapshot of a DEM simulation, with initial layer thickness Hi = 30 d and inclination angle θ = 24◦. The color
code indicates the velocity v(z, t ). (b) Macroscopic friction coefficient μ as a function of inertial number I = γ̇ d

√
ρp/P for frictionless

(diamonds) and frictional (circles) grains, as well as various inclination angles θ , initial layer thicknesses Hi, and various setup configurations
[1,13,22,27,30,31]. (c) Difference μ − μc in friction coefficient as a function of inertial number I , where μc = μ(I → 0), for the same data
as in the previous panel. The solid and dashed lines correspond to fit with μ − μc ∼ Iγ , the values of γ are provided in legend. (d) Ratio of
volume fraction φ/φc as a function of inertial number I for frictionless (diamonds, φc � 0.64) and frictional (circles, φc � 0.6) grains. Data
from [22,27] are added for comparison. The solid and dashed lines correspond to fit with φ/φc = 1 − aIα , the values of α are provided in
legend.

microscopic friction has also been studied. The substrate
is made of immobile grains to mimic the glued grains in
inclined-plane experiments. We impose periodic boundary
conditions in the x and y directions to get rid of side-wall
effects [24]. The size of the base has been carefully chosen
in order to be large enough to avoid autocorrelations due to
periodicity. We stress that similar setups have already been
reported [7,21,22].

Before the inclination of the plane, the layer has an initial
vertical thickness Hi ranging between 10 d and 60 d , with
a base of 20 d × 20 d in the horizontal plane. The plane is
subsequently inclined briefly at 30◦ to initiate the flow. Subse-
quently, the inclination is fixed at the desired angle θ , ranging
between 20◦ and 40◦. For each value of Hi and θ , the actual
layer thickness H along z, and the mean volume fraction φ of
the whole layer (averaged over at least ten time steps in the

steady state) are measured. The average local velocity profiles
〈v(z, t )〉 and the inertial number I are also computed. As a
remark, we have the relation γ̇ (z) = d〈v(z, t )〉/dz. The aver-
ages 〈〉 are performed over time and realizations, at fixed z.

III. RESULTS AND DISCUSSION

In agreement with previous works [1,7,21,22], we observe
that: (i) there is a critical stress to induce flow for dense
granular layers, corresponding to a macroscopic friction co-
efficient 0.2 � μc � 0.4 for frictional grains, and 0.1 for
frictionless grains [Fig. 1(b)]; (ii) the local average velocity
profile is well described by a Bagnold profile; (iii) the volume
fraction φ and the inertial number I remain mostly constant
throughout the layer, for all the studied inclination angles. As
proposed in several studies [6,25,26], dimensional analysis
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FIG. 2. (a) Thickness-averaged standard deviation δv of the velocity field normalized by a typical shear velocity γ̇ d , as a function of
the inertial number I , for frictionless (diamonds) and frictional (circles) grains. Results from previous works [26,27,35] are also shown for
comparison. The dashed line correspond to fit with δv/γ̇ ∼ I−β , the value of β is provided in legend (the fit is limited to small I’s values,
I < 0.05). The solid line is a guide for the eyes and corresponds to a(1 + b/I0.52) with a = 0.25 and b = 1.5. (b) Local variance δv2(z) =
〈|v(z, t ) − 〈v(z, t )〉|2〉 of the velocity field v(z, t ), as a function of rescaled normal coordinate z/d , for a layer of frictional grains initially
characterized by Hi = 60 d and various inclination angles θ as indicated. An affine solid line is added as a guide for the eye.

shows that only one dimensionless parameter is required to
describe granular flows, i.e., the inertial number I (besides
the microscopic friction coefficient). The flow properties are
characterized through the frictional, μ = μ(I ), and the dila-
tancy, φ = φ(I ) laws. The macroscopic friction coefficient μ

is determined by the shear to normal stress ratio [2,6,26]. For
the inclined-plane geometry considered here, both the macro-
scopic friction coefficient and the pressure are prescribed
through the inclination θ of the plane and the height H of
the flowing layer [26]. In a continuum-limit approximation,
the effective friction coefficient for this setup is thus fixed to a
constant value, μ = tan(θ ) � θ for the range of inclination
angles of interest. From dimensional analysis, and since μ

does not depend on z/d , we can conclude that I and φ are
constant throughout the layer and fully determined by the
inclination angle θ and the microscopic friction coefficient.

As previously shown, Fig. 1(c) confirms that μ(I ) is well
described by μ − μc ∼ Iγ , with γ = 0.40 ± 0.01 for friction-
less grains [13,27–29]. For frictional grains, γ = 0.95 ± 0.01
for moderate inclination angles (I � 0.1) in agreement with
previous observations [1,22,30,31]. It should be noted that for
large inclination angles, we observe a change of the expo-
nent that becomes close to the value of frictionless systems
γ = 0.4. The exponent for frictional grains does not depend
on the (finite) values of the microscopic friction coefficients,
thus indicating the singularity of the frictionless limit. In
contrast, μc depends on the microscopic friction coefficients,
but even for frictionless assemblies a nonzero value close
to 0.1 is observed [12,27]. The exact origin of this residual
macroscopic friction remains unclear, but should be related
to the steric constraints associated with granular topography
[32].

The dilatancy laws obtained from the DEM simulations
are shown in Fig. 1(d) and compared to data from the liter-
ature [26,33,34]. For all these combined data, the evolution

of the packing fraction with I can be empirically described
by the relation φc − φ ∼ Iα , where φc = φ(I → 0) is the vol-
ume fraction at kinetic arrest, and with α = 0.89 ± 0.1 and
0.73 ± 0.34, for frictional and frictionless grains, respectively.
Note that for frictionless grains, another functional form was
proposed [27]: 1/φ − 1/φc ∼ I0.4 but remains valid only for
very small inertial numbers, i.e., I � 10−2.

Hereafter, we investigate the microscopic origin of these
laws. As proposed by several authors, the velocity fluctuations
and the diffusion coefficient of the grains are strong indicators
of their dynamics [35,36].

A dense granular flow is characterized by rapid collisions
involving sudden changes of the velocity direction and re-
newal of the contact network. Assuming that all these events
occur at high frequency compared to the evolution of mean-
field quantities, they can be described through a granular
temperature [25]. A reasonable assumption is to consider
that this temperature is related to the local velocity fluctua-
tions through the proportionality relation kBT (z) ∼ mδv2(z),
with δv2(z) = 〈|v(z, t ) − 〈v(z, t )〉|2〉 the local variance of the
velocity field v(z, t ) along the flow direction. Figure 2(a)
shows the evolution of the dimensionless standard deviation
δv/(d γ̇ ), where A = 1

H

∫ H
0 dz A(z) represents the thickness

average of A(z), as a function of the inertial number, for fric-
tional and frictionless grains. We stress that the dimensionless
standard deviation is independent of z due to the Bagnold
profile satisfied by 〈v(z, t )〉 and the affine spatial behavior of
the variance observed in Fig. 2(b). Interestingly, no matter the
frictional nature of the grains, all the data reported here and
in the literature collapse onto a single master curve showing
a decrease of the relative velocity fluctuations with increasing
inertial number. For small I values (I < 0.07), the dimension-
less standard deviation decreases as I−0.52±0.01, while it seems
to saturate to a constant value at large I [35]. Interpolating the
two asymptotic behaviours through a simple crossover form,
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FIG. 3. (a) Mean square displacement 
z along the z coordinate averaged over all the grains. (b) Time correlations of the velocity following
z for a layer of frictional grains initially characterized by Hi = 30 d and various inclination angles as indicated. Inset: Log-lin plot of the velocity
correlations. (c) Thickness-averaged diffusion coefficient Dz along z as a function of the thickness-averaged standard deviation δv of the
velocity field for fictional grains. The solid line indicates a fitted expression as provided in the legend. (d) Correlation time τ of the thickness-
averaged velocity fluctuations as a function the inertial number I . The black solid line corresponds to 0.26 d/(lcγ̇ ), with lc/d = a(1 + b/I0.52)
with a = 0.25 and b = 1.5 found in panel a.

one gets δv/(d γ̇ ) = a(1 + b/I0.52), that fits the data well with
a = 0.25 and b = 1.5 [see black line in Fig. 2(a)].

Let us now investigate the impact of the effective thermal
energy on the grain dynamics. As shown by the time evo-
lution of their thickness-averaged mean-square displacement
along z [see Fig. 3(a)], the grains globally diffuse perpendic-
ularly to the flow direction, at long time with an associated
thickness-averaged diffusion coefficient Dz increasing with
the inclination angle θ . Furthermore, as shown in Fig. 3(c),
Dz increases linearly with the thickness-averaged standard
deviation δv of the velocity field. This linear relation can be
understood from the thickness-averaged Kubo relation

Dz =
∫

dt 〈w(z, t )w(z, 0)〉 ∼ τ (z)δv2(z) ∼ d δv, (1)

with w(z, t ) the velocity field along z, at position z and time
t , and where we assumed isotropic local velocity correla-
tions of amplitude δv2(z) decaying in an exponential fashion
over a local characteristic time τ (z) ∼ d/δv(z). In addition,
given the affine trends in Fig. 2(b), one can show that τ ∼
d/δv. The thickness-averaged temporal correlations functions
〈w(z, t )w(z, 0)〉 of the velocity field along z, as calculated
from the DEM trajectories [Fig. 3(b)], appear to decay faster
with increasing θ . Neglecting long-time power-law tails, we
can show that the exponential-decay time of 〈w(z, t )w(z, 0)〉

is well approximated by ∼τ . Besides, the velocity correlations
suggest the existence of dynamic clusters that persist over
the correlation time. We thus hypothesize the existence of a
characteristic, mesoscopic and a priori z-dependent size lc(z)
over which dynamic clusters persist during the time τ (z).
This is reminiscent of the vortices discussed by Kharel and
Rognon [35]. As proposed by DeGiuli et al., these clusters
produce an amplification of the velocity fluctuations that is
estimated through a “lever” effect [37,38]. Specifically, one
has lc(z) ∼ d/[τ (z)γ̇ (z)], and, with the definition τ ∼ d/δv,
one gets δv(z)/[d γ̇ (z)] ∼ lc(z)/d where the amplification fac-
tor appears clearly. Interestingly, since the left-hand side of
the latter relation is independent of z, as discussed above,
one gets that the dynamic-cluster size lc is in fact indepen-
dent of z for the inclined-plane configuration. Figure 3(d)
shows τ , as estimated from the thickness-averaged temporal
correlations functions shown in Fig. 3(b), as a function of
I . The data are in agreement with the relation τ ∼ d/[lcγ̇ ]
with the lc derived from the crossover expression between
the two asymptotic regimes of Fig. 2(a). Since the expression
for lc is independent of the frictional nature of the grains,
this agreement suggests that the size of the dynamic clusters
is mainly determined by the collisions between grains, but
not by the microscopic friction between them. Furthermore,
from Fig. 2(a) this dynamic-cluster size is expected to diverge

013089-4



MICROSCOPIC FOUNDATION OF THE μ(I) … PHYSICAL REVIEW RESEARCH 5, 013089 (2023)

at kinetic arrest—which is reminiscent of the hypothetical
cooperative length associated with the glass and jamming
transitions. It should however be noted that some influence
of the microscopic friction coefficient has been observed by
DeGiuli and Wyart [37,38], but for very small I values that
are well below the range accessed here.

In the following, we aim at deriving the macroscopic
rheological laws from the microscopic fluctuations and cor-
relations. From dimensional analysis, we have recalled that
a single parameter determines the flow properties. In the
inclined-plane geometry, all dimensionless parameters are
uniquely determined by the inclination angle θ � μ. There-
fore, the dimensionless ratio Pd3/(kBT ) should be constant
in the layer for inclined-plane experiments. In a continuous
mean-field approximation, the pressure field is hydrostatic,
i.e., P(z) = φρpg(H − z) cos θ � φρpg(H − z). It thus fol-
lows that the effective temperature must vary with the depth
according to T (z) ∝ (H − z). As observed in Fig. 2(b), apart
from slight boundary deviations, the affine relation δv2(z) ∝
(H − z) is satisfied for all the tested inclination angles θ ,
which supports the definition of the effective temperature
through kBT (z) ∼ mδv2(z). Interestingly, the effective tem-
perature and the associated mechanical noise are maximal
near the substrate and vanish at the free interface. This sug-
gests that the collisions between mobile grains and the glued
ones at the substrate is the source of temperature in the system.
Furthermore, using the definition of the inertial number, the
pressure can be written as P(z) ∼ mγ̇ (z)2/(dI2). Combining
this relation with δv(z) ∼ lcγ̇ (z), and the definition of the
effective temperature, one gets Pd3/(kBT ) ∼ d2/(l2

c I2). The
cluster size can be derived from free volume and cluster
fractal shape arguments. Indeed, the required free volume to
allow the motion of a grain implies the collective motion of
Nc grains forming a dynamic cluster. The number of grains
involved scale as Nc ∼ 1/(φc − φ). Assuming chain-like clus-
ters with random walk-like geometry [39,40], their size should
be given by lc ∝ Nν

c with ν � 0.5 − 0.6. The size of the clus-
ter then scales with the packing fraction as lc ∼ d/(φc − φ)ν .
Inserting this relation in the expression for the pressure yields
Pd3/(kBT ) ∼ (φc − φ)2ν/I2. By identifying the latter relation
with the equation of state (EOS) for hard-sphere fluids near
the jamming transition [41,42], i.e., Pd3/(kBT ) = φJ/(φJ −
φ), one gets the dilatancy law:

(φc − φ) ∼ I2/(2ν+1), (2)

with 0.91 � 2/(2ν + 1) � 1, provided that we assume that
φJ = φc. These dependencies in inertial numbers are in agree-
ment with the observations. For the dilatancy law, Fig. 1(d)
shows that the exponent α = 2/(2ν + 1) is equal to 0.89 ±
0.10 for frictional and 0.73 ± 0.34 for frictionless grains.
The large uncertainty observed for frictionless data is related
to the lack of values at large I . For the cluster size, the
theory predicts a law lc ∼ d/Iβ with β = 2ν/(2ν + 1). As
shown in Fig. 2(a), we observe β = 0.52 ± 0.01 in very good
agreement with the prediction for this exponent, i.e., 0.5 �
β � 0.54. The universal agreement for both frictionless and
frictional grains can be related to the evolution of the cluster
size with inertial number, and reflects once again the dom-
inance of collisions over friction in the dynamics. The
validity of the hard-sphere-fluid EOS is probably limited to

moderate inertial numbers, i.e., I � 0.5, where the granular
system can be considered as a fluid and where the mechanical
noise ensures that no long-range correlations develop. Indeed,
it is likely that a transition to another dynamics regime appears
close to the jamming, where the mechanical fluctuations be-
come less relevant. For very small values of inertial numbers,
different dilatancy laws were proposed with exponent close to
0.4–0.53 [27,28]. Recent investigations of frictionless systems
with varying restitution coefficients have shown that close to
jamming, the exponent describing the dilatancy law can vary
from 0.6 to 1.5, while it should be close to one for large values
of I [29].

Let us finally propose a microscopic picture for the μ(I )
rheological law. To do so, we consider the steady-state balance
of driving and dissipated powers for a test grain located in a
slab of thickness d at height z. First, to estimate the driving
contribution, we consider that the grain experiences the sum
of gravitational and friction forces projected in the flow direc-
tion, and that θ and θc are small, leading to an effective driving
force ∼ρpφg(H − z)d2(θ − θc). Since the grain moves over a
distance d within a time γ̇ (z)−1, the net local driving power
is Ẇd(z) ∼ ρpφg(H − z)d3(θ − θc)γ̇ (z). Second, we assume
that the energy is mainly dissipated through the collisions with
other grains, characterized by the characteristic decay time
τ (z) ∼ d/[lcγ̇ (z)]. The local power dissipated by collisions
can thus be estimated by Ẇc(z) ∼ mδv2(z)/τ (z). Balancing
Ẇd(z) with Ẇc(z), and recalling that δv ∼ γ̇ lc leads to γ̇ 2 ∼
gdφ(H − z)(θ − θc)/l 3

c . At small angles, and thus small I ,
Fig. 2(a) shows that the cluster size is adequately described
by the relation: lc ∼ d I−β . Inserting this expression in the
previous one, together with the definition of I , yields the
general relation:

γ̇ ∼
[

gφ(H − z)

d2

]1/2

(θ − θc)1/(2−3β ). (3)

First, this expression is compatible with the z dependency
of the Bagnold velocity profile, 〈v(z, t ) − v(0, t )〉 ∝ H3/2 −
(H − z)3/2. Second, recalling that μ � θ , as well as the def-
inition of I , Eq. (3) yields the friction law μ − μc ∼ I2−3β .
Considering the theoretical range of β values, 0.5 � β �
0.54, we obtain a prediction for the exponent, i.e., 0.38 �
(2 − 3β ) � 0.5, in close agreement with the law μ − μc ∼
I0.40±0.01 observed for frictionless grains shown in Fig. 1(c).

We emphasize that the proposed model, based on a frac-
tal dimension for the chain-like clusters related to a simple
random walk, is able to properly predict three different laws
based on the measurements of velocity fluctuations (δv/γ̇ ∼
lc ∼ dI−0.52), packing fractions (φc − φ ∼ I0.9), and flow ve-
locity (μ − μc ∼ I0.4).

One may naively expect Eq. (3) to also hold for frictional
systems, since the velocity fluctuations and cluster size behave
similarly with the inertial number for both frictional and fric-
tionless systems. However, it can not explain the μ − μc ∼ I
relation observed for frictional grains in Fig. 1(c). This dis-
agreement is in fact not surprising. In the derivation of Eq. (3),
it is assumed that all the energy dissipation arises from colli-
sions between grains. This is a very reasonable assumption
for frictionless systems, but an additional source of dissipa-
tion is expected from the mobilization of frictional contacts.
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Unfortunately, including frictional dissipation in a theoretical
model for dense granular flows remains a highly debated issue
[30,37,38]. Nevertheless, interestingly, Fig. 1(c) shows that
for large-enough inertial numbers, the data obtained for fric-
tional systems collapse onto the law of frictionless systems.
This observation suggests that, in the limit of large I , the
energy dissipation is universal and of collisional origin.

We also note that changing the value of the microscopic
sliding friction coefficient μs, from 0.3 to 1, only shifts the
threshold values, μc(μs) and φc(μs), but has no impact on the
scaling laws.

IV. CONCLUSIONS

In summary, from numerical simulations and inspection of
the literature data, we show that the dilatancy law is iden-
tical for frictionless and frictional assemblies. This law can
be further rationalized from a comparison between: (i) the
equation of state constructed from the hydrostatic pressure, an
effective granular temperature related to velocity fluctuations,
as well as the inertial number; and (ii) the equation of state
of hard-sphere fluids near the jamming transition. In con-
trast, the macroscopic friction laws are observed to differ for
frictionless and frictional assemblies. In the former case, we

can rationalize the observations from a power balance at the
grain level, involving gravity, effective friction, and collisions.
We also recover the Bagnold profile for the local average
velocity field. The derivation of a macroscopic friction law
for frictional assemblies remains an open question and should
involve an additional dissipation term related to the formation
of frictional contacts.
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