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The dispersive spreading of microscopic particles in shear flows is influenced both by advection and
thermal motion. At the nanoscale, interactions between such particles and their confining boundaries become
unavoidable. We address the roles of electrostatic repulsion and absorption on the spatial distribution and
dispersion of charged nanoparticles in near-surface shear flows, observed under evanescent illumination. The
electrostatic repulsion between particles and the lower charged surface is tuned by varying electrolyte
concentrations. Particles leaving the field of vision can be neglected from further analysis, such that the
experimental ensemble is equivalent to that of Taylor dispersion with absorption. These two ingredients
modify the particle distribution, deviating strongly from the Gibbs-Boltzmann form at the nanoscale studied
here. Theoverall effect is to restrain the accessible space available to particles,which leads to a striking, tenfold
reduction in the spreading dynamics as compared to the noninteracting case.
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Diffusion is a fundamental microscopic transport mecha-
nism that can be effectively enhanced by orders of magni-
tude in the presence of a hydrodynamic velocity gradient. In
the process commonly known as Taylor dispersion [1],
particles starting from the same position are advected along
the flow while the concentration profile is broadened due to
Brownian diffusion across streamlines, cf. Fig. 1(a). Such
enhanced broadening, i.e., dispersion, is the principal
mechanism for solute dispersal in many natural and tech-
nological contexts [2–10]. At nanometric distances from
surfaces, however, particles can no longer be considered
simple tracers since they are subject to intermolecular
forces [11], mobility-reducing hydrodynamic interactions
with boundaries [12–15], as well as reaction or absorption at
the latter [4,16–18]. Such interactions modify the spatial
structure of particle-probability distributions, but there is yet
no observation about how this modification could affect the
diffusivelike transport dynamics of Taylor dispersion. The
object of this Letter is thus to link nanoscale probabilistic
structure to spreading dynamics.
Taylor dispersion has many applications in situations

where such physicochemical interactions are important,
with biophysical contexts being emblematic. As such, the
seminal theoretical work of Taylor has been significantly
extended [4,17,22–30]. Particle absorption or chemical
reactions on the boundaries induce a gradual and substantial
loss of particle number. This particle loss may strongly

modify particle probability distributions, also complexify-
ing models for dispersion [18,26,30]. Reactivity is critical
for several applications in chemistry and life science
[31–39].
Several experimental works noted that such interactions

or absorption [40] bias diffusion coefficient evaluations
using the Taylor dispersion method [31]. In typically
millimetric capillary tubes, the induced error was noted
as a few tens of percent [41]. Such errors may become
more significant in smaller systems, for instance, in
applications for peptide diffusion and the determination
of aggregate sizes [38,42], among others [43]. State-of-the-
art Taylor dispersion studies also focused on the geometry
of a flow domain [10] at micrometric and millimetric
scales. Other recent experiments, reaching microscales and
nanoscales [44] focused on preasymptotic dispersion
dynamics [45–47], but not on the link between nanoscale
statistical distributions and Taylor dispersion.
In this Letter, we study nanoscale Taylor dispersion in a

near-surface shear flow. First, we systematically vary the
role of surface interactions by tuning the repulsive electro-
static interaction between the nanoparticles and the lower
surface, becoming important for dispersion when the
corresponding interaction scale is comparable to that of
confinement. Second, we employ a finite observation
zone with an open upper boundary; particles leaving this
zone formally correspond to permanently absorbed ones.
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Our experiments thus allow a study of nanoscale dispersion
under adsorption, without the obvious inconvenience of a
polluted, physically absorbing surface. Such a particle loss
is found to strongly modify the observed particle probability
distribution relevant for dispersion. Using an extended
moment theory [48–52], we quantitatively recover our
experimental observations. In contrast to the few tens of
percent noted above for macroscopic systems, we observe a
tenfold Taylor dispersion reduction when both boundary
effects are present, as compared to the case when they are
absent.
We used objective-based, total internal reflection fluo-

rescence microscopy (TIRFM) [47,53], observing individ-
ual, negatively charged, a ¼ 55-nm-radius, latex colloidal
particles. The particles were suspended in pressure-driven
shear flows near an interface between salted water and glass
[see Supplemental Material (SM) Secs. I and II [19]
for videos and experimental details]. These observations
yield the particle positions (the apparent height zapp and x, y
in-plane positions), resolved to within a few tens of nano-
meters. The former allows access to altitude probability
distributions (APDs), whereas sequential particle observa-
tions were linked into temporal trajectories (ca. 105 of them
for this study); see SM Video 1 [19]. Displacements Δx ¼
xðtþ τÞ − xðtÞ over a delay time τ from a particle’s first
observation time twere thus recorded and used to determine
the near-wall shear rate _γ (see SM Sec. II). Also obtained
were the variances of the streamwise, σ2Δx ¼ hðΔx −
hΔxiÞ2i [see Fig. 1(b)], and transverse displacements
σ2Δy, allowing us to calculate dispersion and diffusion

coefficients. Independent trajectories were superimposed
at common spatiotemporal origins, as in Fig. 1(b) herein and
Video 2 in SM, to visualize the evolution of particle
ensembles. Particle volume fractions were small enough
to ignore interparticle interactions.
The Taylor-Aris theory predicts a rescaled, longtime

dispersion coefficient Dx=D0 − 1 ¼ Pe2=30 for a linear
shear flow bounded by reflecting walls [47,49]. Here,
Dx ¼ σ2Δx=ð2τÞ, D0 is the bulk diffusion coefficient of
the nanoparticles, and Pe ¼ _γh2=ð2D0Þ is the Peclet number
comparing transport by advection and diffusion, h being
the observation zone height. In Fig. 2(a) are shown the
normalized streamwise dispersion coefficients as a function
of τ, with at least four shear rates used for each condition
(see SM Sec. II-D for unscaled data [19]). The normaliza-
tion uses the depth-averagedDy ¼ σ2Δy=ð2τÞ (note the angle
brackets in the axis label), which closely approximates the
bulk diffusion coefficent D0 [47]. Importantly, we note a
strong modification in the dispersion coefficient on chang-
ing the salt concentration: the data for the highest salt
concentration give nearly a threefold increase in the
dispersion, as compared to ultrapure water, as also indicated
in Fig. 1(b). We note furthermore that h andD0 are identical
for the three different datasets at laser illumination power of
Plaser ¼ 150mWin Fig. 2(a). Therefore, the classical Taylor-
Aris theory, supposing noninteracting tracer particles in flows
bounded by rigid walls, is clearly inappropriate here. This
observation motivates a detailed investigation into the influ-
ence of the interactions with the walls on dispersion.
At equilibrium, the particles’ concentration follows a

Gibbs-Boltzmann distribution with cB ∝ exp ½−U=ðkTÞ�,
where U is an interaction potential and kT the thermal
energy. In Figs. 2(b, i)–2(b, iii) are thus shown exper-
imental APDs, P for identically imposed pressure drops of
30 mbar and different salinities; the distributions are
normalized by their maxima and no filtering concerning
the time of observation is made. Since the particles and
glass surfaces are negatively charged, a repulsive electro-
static interaction that can be obtained from DLVO theory
[11] is expected:

UelðzÞ ¼ kT
a

l̃B
exp

�
−
z − a
lD

�
: ð1Þ

Here lD is the Debye length, l̃B ¼ e2=ðϵkTÞ ×
½tanhðeψp=ð4kTÞÞ tanhðeψw=ð4kTÞÞ�−1 is a surface-
modified Bjerrum length [11], and e, ϵ, ψp, and ψw are
the elementary charge, the dielectric permittivity of the liquid,
the particle, and the wall surface potentials, respectively.
The lines in Fig. 2(b) are model fits to the experi-

mental APDs particularly including the Boltzmann distri-
bution cBðzÞ with the potential of Eq. (1) as the only
energetic contribution—other necessary ingredients, see
Refs. [47,54,55], include the finite camera sensitivity

FIG. 1. (a) Side-view schematic of the experimental setup. In an
observation zone of height h, nanoparticles with radius a are
advected by a linear shear flow, vxðzÞ ¼ _γz, and diffuse. Electro-
static potentialsUelðzÞ with Debye lengths lD repel particles from
the bottom surface at z ¼ 0. Particles reaching the upper limit at
z ¼ h are considered as absorbed. (b) Reconstructions of three
successive experimental positions of fluorescent nanoparticles,
with top, middle, and bottom-row lag times τ ¼ f2.5; 25; 50g ms,
in (i) pure water, (ii) 5.4 mg=L, and (iii) 54 mg=L NaCl aqueous
solution; see SM Videos 1 and 2 [19].
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(giving the observation zone height, h), along with objec-
tive optics and particle polydispersity, modifying the direct
correspondence between distance and intensity. The good
agreement for the full fits here suggests that the electro-
static repulsion mainly [56] determines the distribution
of particles near the wall. Therefore, we call these
the quasiequilibrium APDs (QE-APDs). Quantitatively,
the Debye lengths obtained from the QE-APD fits are
lD¼f67;32;10g�3 nm for ½NaCl� ¼ f0; 5.4; 54g mg=L,
respectively, in agreement with the DLVO theory [11].
Furthermore, we find a salinity-independent l̃B ¼ 13�
3 nm consistent with expected particle and wall potentials
of approximately −120 mV; see SM Sec. II.A [19]. For the
different salinities, decreased electrostatic repulsions allow
particles to access a larger part of the velocity gradient,
enhancing the dispersion. For an observation zone height of
approximately 800 nm, a 50 nmDebye-length modification
gives a twofold change in the dispersion coefficient.
Besides intermolecular interactions, the height h is a

key ingredient for the QE-APD fits. This height can be
tuned by changing the laser power, as shown in Fig. 2(b,
iii). Accordingly, for pure water, decreasing the laser power
gives a further factor of 2 decrease in the normalized,

steady Dx between the highest and lowest laser powers in
Fig. 2(a). On exceeding h a particle’s trajectory is no longer
considered, as indicated by the crossed-out particle in
Fig. 1(a), and thus the open boundary acts as an ideal
particle sink. This sink progressively modifies the structure
of the particle distribution in the observation zone [4,41], as
shown next.
In Fig. 3(a), experimental time-dependent (TD) APDs

are shown for pure water, displaying different delay times
since the particles’ first observation. As the typical time-
scale to diffuse out of the observation zone is given by
h2=D0, the TD-APDs are plotted for different values of the
dimensionless time D0τ=h2. A temporal evolution of the
TD-APD is observed, and a steady state is reached for
times approaching the diffusion time h2=ðD0π

2Þ predicted
by Taylor [1]. Remarkably, this longtime, steady distribu-
tion is different from the QE-APD, thus representing a
violation of the Gibbs-Boltzmann distribution, shown in
black for comparison.
To assess the effect on the aforementioned probabilistic

modifications on the dispersion, theoretically we consider a
population of nanoparticles initially located at the origin
x ¼ 0 (see Fig. 1) and distributed vertically with an initial
concentration profile cðx ¼ 0; z; t ¼ 0Þ ¼ ciniðzÞδðxÞ. The
concentration field cðx; z; tÞ obeys the advection diffusion
equation [22],

∂c
∂t

þ vxðzÞ
∂c
∂x

¼DxðzÞ
∂
2c
∂x2

þ ∂

∂z

�
DzðzÞ

�
∂c
∂z

þU0
elðzÞ
kT

c

��
;

ð2Þ

where Dx and Dz are the streamwise and cross-stream
diffusion coefficients. These latter depend on z due to
hydrodynamic forces induced by the no-slip boundary
condition at the hard wall [see SM Eq. (S3) [19] ].
Zero particle flux at the wall imposes Dz½ð∂c=∂zÞ þ
ðU0

elðzÞ=kTÞc� ¼ 0 at z ¼ a. As nanoparticles are not
followed after they leave the observation zone, the con-
centration field vanishes at the open boundary, i.e.,
cðx; z; tÞ ¼ 0 at z ¼ h. This Dirichlet boundary condition
is equivalent to a chemical absorption reaction with an
infinite reaction rate [17].
The moments of the concentration field described

by Eq. (2) can be computed in many ways, including
the moment [48–52], invariant manifold [26,57], Green-
Kubo [30,58], and large-deviation methods [59,60]. Here,
we use a moment theory solving for the time-dependent
streamwise pth (with p ≥ 0) moments cpðz; tÞ ¼R
R xpcðx; z; tÞdx recursively (see SM Sec. III [19]).
Using a modal decomposition, the solution is found to
be of the form

cpðz; tÞ ¼
X∞
k¼1

cp;kðz; tÞ expð−λktÞ; ð3Þ

FIG. 2. (a)Timedependence of the scaled, shear-rate normalized,
dispersion coefficient. Each line corresponds to averaging at least
four shear rates, the shaded area displaying the associated standard
deviation. (b) Normalized QE-APDs as a function of distance
zapp for varying salt concentrations: (i) ½NaCl� ¼ 54 mg=L,
(ii) ½NaCl� ¼ 5.4 mg=L, and (iii) ultrapure water. In (iii), the three
laser powers are shown. The same color code is used in (a).
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where cp;k are polynomial functions of t of degree p and λk
are the eigenvalues of the corresponding Sturm-Liouville
problem, with λ1 < λ2 < � � �. We show in Fig. 3(b) the
theoretical TD-APD at different times for an ensemble of
particles initially distributed according to a Boltzmann
weight ciniðzÞ ¼ cBðzÞ, using the same electrostatic param-
eters and the absorbing wall at h obtained by fitting the
data in Fig. 2(b). The main qualitative features of the
experimental observations are recovered: a depletion zone
develops near the open boundary while the TD-APD
converges toward a steady distribution, corresponding to
the spatial structure of the slowest eigenmode with λ ¼ λ1
[see SM Eq. (S9)].
Importantly, the slowest eigenmode of Eq. (3) has a

nonzero eigenvalue such that the total number of particles
m0 decays exponentially at long times. This decay is a
consequence of the absorbing boundary at the limit of the
observation zone. In Fig. 3(c), we show the experimental
fraction m0ðtÞ ¼

R
h
a c0ðz; tÞdz=½

R
h
a c0ðz; 0Þdz� of particles

remaining in the observation zone, as a function of the
dimensionless lag time. No matter the strength of the
electrostatic interactions and the laser power, a temporally
exponential decay of the number of particles is observed at
long times. Similarly, in Fig. 3(d), we show the theoretical
fraction of particles remaining in the observation zone, as a

function of the dimensionless lag time, for the three Debye
lengths accessed experimentally. We again find an expo-
nential decay at large times, i.e., m0 ∝ exp ð−λ1τÞ, inde-
pendent of ciniðzÞ.
From a microscopic point of view, the nanoparticles

diffuse out of the observation zone, such that the typical
decay timescale is set by the time ∼h2=D0 needed for the
particle to reach the absorbing boundary at the top of
the observation zone. Besides, the decay time depends on
the electrostatic and hydrodynamic interactions via the
ratios between the typical length scales in the problem and
the channel size. Altogether, the theoretical decay rate reads
λ1 ¼ ðD0=h2ÞF½ðlD=hÞ; ðl̃B=hÞ; ða=hÞ�, where F is an
unknown dimensionless function to be determined by
solving the eigenvalue problem described in the SM
Sec. III-B [19]. In Fig. 4(a), we compare experiments
and theory for the dimensionless decay timeD0=ðλ1h2Þ as a
function of the Debye-length-to-channel-size ratio. As
expected, the longer the range of the electrostatic inter-
action (i.e., the larger Debye length), the faster particles
leave the observation zone. While there is a small deviation
between the measurements and predictions, especially for
the unmodified water (blue), the overall trends agree.
Since the open boundary of our experiments affects

the TD-APDs, as described in Figs. 3(a) and 3(b) and as
dictated by the spatial structure of the slowest eigenmode,
our theoretical approach allows a prediction regarding
dispersion. Computing the first and second moments of
the concentration, we extract the dispersion coefficient of the
remaining particles; see SM Sec. III-E [19]. This coefficient
converges to a steady value at long times, as in Fig. 2(a). The
long-term dispersion coefficient Dx can be written as the
sum of the steady-state averaged streamwise molecular
diffusion coefficient hDxi, cf. SM Eq. (S40) [19], and a
term induced by the advection-diffusion coupling:

FIG. 3. (a) Rescaled experimental APDs, for the indicated
dimensionless lag times and for ultrapure water, Plaser ¼
150 mW and a pressure drop of 30 mbar. The black curve
shows the QE-APD [cf. Fig. 2(b)(iii)]. (b) Theoretical prediction
for (a), with 3 × 10−4 ≤ D0τ=h2 ≤ 3 × 10−1. The initial con-
dition (dashed line) corresponds to cB ∝ exp½−Uel=ðkTÞ�,
with Eq. (1) and the parameters obtained through fitting in
Fig. 2(b). (c) Experimental and (d) theoretical remaining particle
fractions, as functions of dimensionless lag time. The color
codes are the same as in Fig. 2, and the shades indicate the same
varying laser powers as for water. Curves of different salinity are
shifted vertically for clarity.

FIG. 4. (a) Dimensionless decay time of the number of
remaining particles versus height-normalized Debye length;
colors as in Fig. 3. Theoretical predictions with absorbing
boundary conditions are displayed using solid lines (see SM
[19]). (b) Reduced, steady dispersion coefficient as a function of
the height-normalized Debye length. Theoretical predictions are
described in the text, solid lines use the same theory as in (a).
Figure S3 in SM schematically describes each model.
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Dx ¼ hDxi þ
Z

h

a

1

cBðzÞ
½vxðzÞ − hVi�ζ1ðzÞf1ðzÞdz; ð4Þ

where hVi and f1ðzÞ are the steady-state averaged velocity
and the steady TD-APD shown in Fig. 3(b), respectively.
The quantity ζ1 is an auxiliary function related to f1ðzÞ as in
SM Eq. (S19).
In Fig. 4(b) are shown the rescaled, steady dispersion

coefficients for all of the experimental salinities and laser
powers (colored dots). The general increase of dispersion
coefficient with salinity seen is expected due to increased
access to the near-wall regions on electrostatic screening,
as in Fig. 2. For a quantitative description of the data, we
also display predictions of four different models (see SM
Fig. S3 for schematics [19]).
The tracer theory of Taylor [1] and Aris [48] largely

overestimates the data (black dashed line). Moment theory
for a wall with infinite adsorption rate, i.e., an open
boundary, but no lower surface interactions with the wall
[SM Eq. (S42) [19], black, dash-dotted line] predicts a
significant global decrease in the dispersion coefficient.
Both these models are yet independent of salt concen-
tration. The theory of Refs. [22,30] assumes a reflective
boundary at z ¼ h and includes conservative interactions
with one wall. Dispersion coefficients from this theory read
Dx ¼ hDxi þ f½DzðzÞ; cBðzÞ; vxðzÞ�, cf. SM Eq. (S44), and
are decreased as compared to the classical Taylor model
(dashed colored lines), yet still overestimate the measured
dispersion coefficients.
Finally, the moment theory combining electrostatic

interactions and an open boundary at z ¼ h, Eq. (4),
quantitatively captures the measurements (solid colored
lines), even while noting a small systematic deviation for
the pure water case. Figure 4(b) stresses that using an
absorbing boundary condition at the limit of the observa-
tion zone is necessary to accurately estimate the reduction
of the dispersion coefficient measured in the TIRFM
experiments. Indeed, the relevant statistical distributions
at the heart of Taylor dispersion phenomena are thereby
strongly modified. In contrast, the existing theory [22,30]
depends only on the APD given by cBðzÞ.
To conclude, our collective observations show that

chemical- or absorption-induced leakage at boundaries
and particle-surface interactions can play a dominant role
in Taylor dispersion at the nanoscale. Nanoscale transport is
routinely used to measure the physical properties of bio-
logical objects and processes, as in Refs. [37–39,42,43,61].
Here, we have demonstrated that the precise nature of
particle-surface interaction must be carefully taken into
account to yield accurate measurements.
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