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Abstract Freestanding thin polymer films with high molecular weights exhibit an anomalous decrease in
the glass-transition temperature with film thickness. Specifically, in such materials, the measured glass-
transition temperature evolves in an affine way with the film thickness, with a slope that weakly depends
on the molecular weight. De Gennes proposed a sliding mechanism as the hypothetical dominant relaxation
process in these systems, where stress kinks could propagate in a reptation-like fashion through so-called
bridges, i.e. from one free interface to the other along the backbones of polymer macromolecules. Here, by
considering the exact statistics of finite-sized random walks within a confined box, we investigate in details
the bridge hypothesis. We show that the sliding mechanism cannot reproduce the basic features appearing
in the experiments, and we exhibit the fundamental reasons behind such a fact.

1 Introduction

Some liquids do not undergo a first-order phase transi-
tion to the crystalline solid state when being quenched
in temperature, but rather exhibit a supercooled liquid-
like behaviour with sharply increasing relaxation times
as the temperature is reduced [1–5]—a phenomenon
known as the glass transition [6,7]. While recent the-
oretical breakthroughs have shown the existence of an
ideal glass transition in infinite space dimensions [8], a
complete understanding of the formation of real glassy
materials remains a central unsolved problem in con-
densed matter physics [9]. In addition to the inter-
est in this fundamental problem, glassy materials find
widespread use and their rheology and stability have
significant technological importance.

In the supercooled liquid state, particles are crowded
and must move in a correlated way to allow for a reor-
ganisation or a relaxation event [10]. This phenomenol-
ogy has been used to suggest the emergence of a dynam-
ical cooperative length scale [11]. To probe this hypo-
thetical length scale, besides bulk numerical simula-
tions [12], or mimetic jammed colloidal systems [13,14],
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an alternative strategy consisted in studying finite-
size effects on the glass-transition temperature Tg, i.e.
through systems with a similar nanometric size as
the cooperative length at stake [15–18]. In particular,
experiments and numerical studies investigating thin
glassy polymer films have been performed [19–29], and
have revealed a set of rich and exotic phenomena. Most
notably, a reduction of Tg in thin films of many materi-
als was observed and was further attributed to a com-
bination of the dynamical correlation length with an
enhanced liquid-like surface mobility in glasses. These
observations have been studied from a theoretical point
of view as well, but there is no definitive consensus yet
on the exact underlying mechanisms at play [30–40].

Moreover, beyond the above generic confinement and
interfacial behaviours of glassy materials made of small
molecules or oligomers, and apart from possible residual
stresses and artefacts induced by sample-preparation
protocols [41], wether or not specific polymeric effects
exist within the glassy physics is an interesting fun-
damental question with important practical implica-
tions given the widespread used of thin plastic films.
Accordingly, freestanding polymer films with a thick-
ness h comparable to the macromolecular radius of
gyration Rg were experimentally studied [42–46]. The
experiments showed that, for molecular weights Mw <
378 × 103—i.e. ∼ 3600 monomeric units—Tg does not
exhibit any dependence on Mw, and the curves can be
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Fig. 1 Glass-transition temperature Tg of freestanding
polystyrene films as a function of film thickness h, for var-
ious average molecular weights Mw. By extrapolating the
low-thickness linear regimes towards larger thicknesses, one
empirically finds a universal crossing point, denoted by
(h∗, T ∗

g ). Figure reproduced from Ref. [43]

mapped onto the one for low-Mw supported films. How-
ever, for larger Mw, the Tg dependence on h and Mw

becomes non-trivial, as shown in Fig. 1: at large thick-
nesses, Tg is equal to the bulk value T bulk

g ; at small
thicknesses, Tg decreases in an affine way with decreas-
ing h, together with a slope moderately increasing with
Mw. As such, the glass-transition temperature follows
the empirical law:

Tg = T ∗
g + f(Mw)(h − h∗), (1)

for h < hc, where hc = h∗ + (T bulk
g − T ∗

g )/f(Mw) is
a Mw-dependent critical thickness separating the two
regimes, with f a slowly increasing function of Mw, and
where h∗ and T ∗

g are the coordinates of an apparent
universal crossing point obtained by extrapolating the
low-thickness linear regime of Eq. (1) towards larger
thicknesses (see Fig. 1). The function f(Mw) was sug-
gested to be logarithmic-like [42], a form which, per-
haps coincidently, is also present in other interfacial
polymeric effects [47]. The existence of such a sharp
transition in thin supercooled polymeric films suggests
a change of dominating relaxation mechanism around
hc, from a generic bulk molecular one above hc, to a
purely confinement-induced polymeric one below hc—
indicating a probable connexion between hc and some
typical macromolecular polymeric length scale. In addi-
tion, the empirical trends suggest that the polymeric
mechanism starts to be present below the universal
onset thickness h∗, but remains less efficient than the
bulk one for hc < h < h∗. Moreover, it was proposed
that the polymeric relaxation mechanism in thin super-
cooled polymer films requires two free interfaces to be
connected by bridges consisting of individual macro-
molecules [42]—which we refer to as the bridge hypoth-
esis.

The glass transition in thin polymer films was further
shown to have even a finer structure, with in fact two
glass transitions occurring with some finite temperature
gap in between them [48], corroborating the existence
of three competing distinct relaxation mechanisms [49]:
a bulk one, a confined molecular/monomeric one, and
a confined polymeric one. These features are consistent
with the observations made in Ref. [43], where a flow
behaviour in thin freestanding polymer films was only
measured near T bulk

g —independently of the actually
measured Tg. Moreover, by removing one of the two free
interfaces of a freestanding polymer film, it was exper-
imentally shown that the polymeric behaviour totally
disappears [46,50], which seems to corroborate the sem-
inal bridge hypothesis. As a side remark, we note that
the coupling between different relaxation mechanisms
in the bulk was experimentally investigated in details
recently, and revealed the role of intramolecular coop-
erative dynamics in the bulk polymeric glass transi-
tion [51].

As an early attempt to rationalize the affine trend
in Eq. (1), de Gennes sketched a model based on
free-volume arguments and an original sliding mecha-
nism involving the reptation-like propagation of stress
kinks along the macromolecular bridges [52,53]. The
focus on bridges is in alignment with the experimen-
tal finding that the phenomenon could be dramatically
reduced by eliminating one of the free surfaces. This
model assumed an infinite molecular weight, as well as
a Gaussian-tail distribution of the free volumes along
the chain backbone, and involved an ideal random walk
scaling for the average bridge length. Despite its mer-
its, the sliding model suffered from intrinsic limitations,
and could not reproduce all the experimental obser-
vations [46]. Milner and Lipson suggested a delayed-
glassification model [54], extending the sliding model
and computing the bridge-length distribution for infi-
nite molecular weights, that led to a depth-dependent
Tg and a decrease in the overall measured Tg [55]. But,
once again, while the qualitative picture seemed appeal-
ing, the model could not reproduce the experimental
data in a quantitative fashion.

To date, there is actually no model which quantita-
tively captures the Mw dependence of Tg in thin poly-
mer films. In his seminal work [52], de Gennes sug-
gested to refine his approach by performing a com-
plete statistical treatment of the bridge distribution
for finite-sized polymer chains in a thin film. This is
thus the topic of the present article, where we compute
the bridge-length distribution, its mean value, and its
proportion within a film, and use the obtained results
in order to critically revisit de Gennes’ sliding mecha-
nism. We note that loops, i.e. chain portions connect-
ing two points of a single interface, are not considered
here for two reasons. First, supported films also contain
loops but do not show the Mw behaviour of freestanding
films [42,46,50]. Secondly, adding loops to the calcula-
tion does not change the Mw dependence.
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2 Sliding mechanism

Here, we first briefly recall the main ingredients of the
sliding model [52]. Therein, the relaxation time τ is
essentially set by the time required for a kink, i.e. some
localized stress, to travel along a bridge, i.e. a portion of
polymer chain connecting the two free interfaces. The
kink travels along the chain backbone using successive
independent jumps indexed by i and involving volumes
ωi, which are assumed to be normally and identically
Gaussian-tail distributed, as:

p(ωi) =

√
2

πω2
0

e
− ω2

i
2ω2

0 , (2)

where the standard deviation ω0 is assumed to be small
compared to the monomer size ∼ a3, in order to reflect
the fact that relaxation along the chain is easier than
bulk molecular relaxation. The average relaxation time
of this sequential process thus reads:

τ = τ0

〈
exp

(
1

vf(T )

∑
i

ωi

)〉
P

, (3)

where the average is made over the ensemble {ωi}
against the distributions P = Πip(ωi), and where vf(T )
is the free volume at temperature T . As classically done,
vf is assumed to vanish at a finite temperature TV and
to evolve in an affine way with temperature, so that:

vf(T ) = αa3(T − TV), (4)

where α is the expansion coefficient. Assuming that
the process happens along a bridge of average number
of units 〈b〉 gives τ/τ0 ∼ exp

[
1
4 〈b〉 ω2

0/v2
f (T )

]
. Since

the logarithm of the normalized time does not change
drastically around the effective glass transition, using
Eq. (4) one eventually finds:

Tg − TV ∝
√

〈b〉. (5)

Introducing the film thickness h, and assuming that
〈b〉 ∼ h2—which is only valid for infinite ideal ran-
dom walks—then leads to the affine trend with h in
Eq. (1). We now aim at calculating the exact bridge-
length distribution for finite-sized polymer chains, in
order to investigate wether or not the Mw dependence
in Eq. (1) can also be captured by the sliding model.

3 Bridge statistics

We consider a film made of a dense (supercooled) poly-
mer melt consisting of identical chains, containing N
monomers of size a (e.g. for polystyrene, one has a
rescaled ideal monomeric size a ≈ 0.75 nm) each. The
film is assumed to be infinite in the (x, y)-plane and to

Fig. 2 Sketch of the problem studied, as obtained from
numerical simulation. We consider an ideal random walk
with N steps in a box of dimensionless thickness H =
10 along the z-axis. A randomly chosen monomer (grey),
located at an altitude z, is P steps away from one of the
walk ends, and N − P steps away from the other end.
The chosen monomer is connected to both the z = 0 and
z = H interfaces, with paths of dimensionless lengths l1 and
l2, respectively, forming a bridge (orange) of dimensionless
length B = l1 + l2. Another part (blue) of the random walk
does not belong to the bridge

have two flat free interfaces located at the dimension-
less vertical coordinates z = 0 and z = H = h/a. We
define a bridge as a segment of a polymer chain that
connects the two free interfaces, as shown in Fig. 2.

First, we are interested in the probability density of
the dimensionless bridge length B = b/a, at a cer-
tain position z inside the film. We start by picking a
monomer at a distance z from the lower interface. This
monomer belongs to a polymer chain. From the position
of the picked monomer, there are two branches of the
polymer chain. As we deal with a (supercooled) poly-
mer melt, these two branches can be properly described
by Gaussian statistics [56]. For large N , i.e. high molec-
ular weight, one can invoke the continuous description
of Brownian motion. As such, the probability density
of the bridge length can be constructed using a con-
strained sum of the first-passage “times” of two Brow-
nian motions. The polymer chain is of total length N , so
that the test monomer considered above is at a distance
P from one end of the chain, and at a distance N − P
from the other end (see Fig. 2), with P uniformly dis-
tributed in [0, N ]. Denoting l1 and l2 the first-passage
“times” of the chain from the test monomer to the z = 0
and z = H interfaces, respectively, with l1 ≤ P and
l2 ≤ N − P , the bridge length reads B = l1 + l2.

Therefore, the probability density ρ(N,H,B, P, z)
that a monomer located at a distance z from the bot-
tom interface, and at position P along a chain of total
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length N , belongs to a bridge of length B, reads:

ρ = 2
∫∫

I1×I2

dl1dl2 δ(l1 + l2 − B)f0(z, l1)fH(z, l2),

(6)

with I1 = [0, P ], I2 = [0, N − P ], where the factor 2
accounts for the possibility of the two bridge subparts
to be exchanged, and where f0(z, l1) and fH(z, l2) are
the first-passage-time probability densities to the bot-
tom and top interfaces, after “times” l1 and l2, respec-
tively, when starting at a distance z from the bottom
interface [57]. By performing one of the two integra-
tions, Eq. (6) becomes:

ρ = 2
∫

I

dlf0(z, l)fH(z,B − l). (7)

with I = [max(0, B − N + P ),min(B,P )]. Then, uni-
formly averaging Eq. (7) with respect to P and z, gives
the probability density ρ̄(N,H,B) that a randomly cho-
sen monomer inside the film belongs to a bridge of
length B, between 0 and N , as:

ρ̄ =
4π2D2

H4

(N − B)B

N

∞∑
k=1

k2 (−1)k+1
e−Dλ2

kB , (8)

where λk = kπ
H and D = 1

2d , with d = 3 the space
dimension. By integrating Eq. (8) over B, from 0 to N ,
one gets the fraction φ(N,H) of monomers belonging
to bridges, as:

φ =
1
3

− 7H2

90DN
(9)

+
4
π2

∞∑
k=1

(−1)k+1

k2
e−Dλ2

kN

(
1 +

2H2

π2DNk2

)
, (10)

where we note the expected diffusive-like self-similarity
in the variable H/

√
DN . The limit 1/3 at infinite N is

intuitive, since any sub-part of the chain containing a
given monomer then touches two interfaces, either twice
the top one, or twice the bottom one, or once each of
the two interfaces, with equal chances.

We now turn to the central quantity of interest in
this work, i.e. the average dimensionless bridge length
〈B〉, which is a function of N and H. It can be directly
computed from Eq. (8), leading to:

〈B〉 =
1

φ(N,H)

[
7H2

90D
− 31H4

1260ND2

+
4N

π2

∞∑
k=1

(−1)k+1

k2
uk(N,H)e−Dλ2

kN

]
, (11)

where, for convenience, we invoked the auxiliary func-
tion:

uk = 1 +
4H2

π2DNk2
+

6H4

π4D2N2k4
. (12)

By expanding Eq. (11), one finds in particular the large-
N asymptotic behaviour:

〈B〉 	 7H2

30D
− 61H4

3150D2N
+ O

(
1

N2

)
, (13)

that exhibits the 〈B〉 ∼ H2 scaling invoked in the slid-
ing model [52], as well as the first finite-size correction
to it.

4 Finite-size sliding mechanism

We now examine the modification of the sliding mech-
anism for polymer chains of finite length. By plugging
Eq. (11) into Eq. (5), one can get an exact expression
(not shown) for Tg(H,N) from the sliding mechanism.
Expanding the latter, one gets the large-N asymptotic
behaviour:

Tg − TV ∝ H√
D

(
1 − 61H2

735DN

)1/2

. (14)

In Fig. 3, we plot
√〈B〉 as a function of H, for dif-

ferent values of N , by numerically evaluating Eq. (11).
While we recover the linear behaviour introduced in
Ref. [52] in the strong-confinement regime, the lead-
ing term in the large-N asymptotics is independent
of N . In other words—and even without discussing
the intercept—the slope of the affine regime cannot
exhibit the logarithmic-like dependence in N seen in the
experiments [42,43] (see Fig. 1 and Eq. (1)), prevent-
ing the current refined sliding mechanism from explain-
ing them, even qualitatively. We stress that Eq. (11) is

Fig. 3 Square root of the average dimensionless bridge
length 〈B〉 as a function of dimensionless film thickness H,
for three chain lengths N , obtained from the numerical eval-
uation of Eq. (11) using a cut-off after 100 terms in the sum.
The results have been checked to weakly depend on the cut-
off value in this range
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essentially of the form:

〈B〉 =
H2

D
F

(
H√
ND

)
, (15)

with F a scaling function, which, combined with
Eq. (5), cannot lead to the factorized form of Eq. (1).
We also stress that including loops in addition, or exclu-
sively, does not help too, as all these types of paths can
be seen under the same category of survival processes,
and therefore exhibit a large-N saturation of their aver-
age lengths around the value of the film thickness.

5 Discussion

In an attempt to generalize our findings to some vari-
ations in the sliding mechanism, we assume that the
relaxation time is of the generalized form:

τ = τ0 H
[
〈B〉, a3

vf(T )

]
, (16)

where τ0 is a reference time scale, and H is an increas-
ing function of both its arguments. Indeed, the relax-
ation time is expected to increase with increasing
bridge length or decreasing free volume. Therefore, and
because the effective glass-transition temperature Tg of
a film is assumed to be reached when τ reaches the ref-
erence relaxation time of a bulk material at T bulk

g [52],
a relation of the following form must be satisfied:

vf(Tg) = a3 G (〈B〉) , (17)

where G is an increasing function. In the sliding
model [52], one has G(x) ∝ √

x for instance. For com-
parison, in the delayed-glassification model [54], one
has G(x) ∝ log(x). As a side remark, a linear rela-
tion between free volume vf and temperature T was
assumed (see Eq. (4)), in view of thermal expansion in
a sufficiently narrow temperature range, but we stress
that any behaviour of the form vf ∼ (T − TV)β with a
positive exponent β would lead to the same conclusion.

Let us now exhibit a necessary condition that should
be satisfied by a model to ensure its applicability for
describing experimental facts. The trends in Fig. (1)
are consistent with Eq. (1), and a factor f(Mw) slowly
diverging with Mw [42]. Assuming the latter divergence
to be true implies that:

lim
Mw→∞

∂Tg

∂h
= +∞. (18)

Combining the latter with Eq. (4), and assuming TV

and α to be independent of h, leads to:

lim
N→∞

1
a3

∂vf(Tg)
∂H

= +∞. (19)

Finally, by combining Eq. (19) with Eq (17), one gets:

lim
N→∞

G′(〈B〉) ∂〈B〉
∂H

= +∞. (20)

From Eq. (13), we see that the left-hand side of Eq. (20)
equals [7H/(15D)]G′[7H2/(30D)], which is positive,
but finite. Hence, even a generalized formulation of the
sliding model following Eq. (16) cannot describe the
experimental data. As a result, within the Gaussian
framework, we can conclude that a different mecha-
nism is needed to explain the Mw dependence of the
Tg reductions in thin freestanding polymer films.

6 Conclusion

We have computed the probability density function of
the bridge length in a thin film made of a dense equilib-
rium assembly of identical finite-sized polymer chains.
The calculations were performed in the Gaussian-chain
framework. We have then used the obtained expres-
sions in order to refine and critically discuss the slid-
ing model for the anomalous glass transition in thin
freestanding polymer films. Our analysis suggests that
the sliding model, as well as similar models based
on free-volume arguments, can not capture the intri-
cate chain-length dependence of the experimental data.
Another key physical ingredient, with a dependence on
the molecular weight, seems to be missing. Finally, we
note that: (i) the remarkable stability of the films above
the measured Mw-dependent Tg; (ii) the proposed exis-
tence of a second Tg, more closely associated with flow;
and (iii) the coincidence of T ∗

g with the temperature of
the α − β splitting in polystyrene, may all suggest that
the Mw-dependent Tg in freestanding polymer films is
associated with a local segmental, rather than cooper-
ative segmental, relaxation.
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F.W. Starr, A unifying framework to quantify the effects
of substrate interactions, stiffness, and roughness on the
dynamics of thin supported polymer films. J. Chem.
Phys. 142, 234907 (2015)

123



Eur. Phys. J. E (2023) 46 :8 Page 7 of 7 8
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