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The main goal of statistical physics is to describe systems composed of a very large number of enti-
ties such as atoms and molecules, without computing the detailed dynamics of all these constituent.
It has been extremely successful in the past century in computing equilibrium phase diagrams and
transitions between phases, such as the condensation of a gas into a liquid, the crystallization of
liquids into a solids, or the spontaneous magnetization of ferro-magnetic materials.

Statistical physics also allows to study the dynamics of these systems when they are relaxing
towards equilibrium or when they are driven steadily out of equilibrium.

The system of interest can be ordered, like crystals ; they may contain impurities, which introduce
some disorder or be fully disordered like liquids. They can be classical or quantum systems. The
complexity emerging from the presence of disorder and the connection between classical and
quantum systems are fascinating topics, which are still a matter of active research.

Also, in the past decades, statistical physics has started to be used outside the realm of material
sciences and now covers a wide range of topics such as the description of protein folding, evolution
and population dynamics, stock-market analysis, big-data, algorithmic, neural networks and ma-
chine learning...

In the present course, we shall certainly not cover all these topics. Our main goal is to provide the
reader with (i) an overview of the concepts underlying statistical physics, (ii) a panorama, or rather
a typology of the topics that can be studied using statistical physics and (iii) the very basic tools
anyone should know when being interested in studying further such topics.

The course is organized in four parts. Part I introduces the reader to the foundation of statistical
physics and concludes with a panorama of the topics it covers. This is also the occasion to list the
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topics that will be discussed later in the course, a minor part of them... Part II deals with the des-
cription of classical Hamiltonian systems, namely the classical description of matter. This will lead
us to Part III, with the fascinating world of critical phenomena, where statistical physics acquired
nobility. Finally Part IV deals with the stochastic approach to statistical physics : replacing the
deterministic Hamiltonian dynamics by an effective stochastic dynamics first brings considerable
simplifications to the computation of out of equilibrium properties, second allows to generalize the
methods to non-hamiltonian dynamics and thereby expand the field of statistical physics to virtually
all many-body problem:s.

The course is of a first year master level, and should be seen as a good introduction to more specific
topic courses as provided in 2nd year of master. References to standard textbook chapters will be
provided to complement this introductory material.

Let us thank again Romain De Oliveira, who made the first attempt of putting these notes together.
We also thank all students for their participation and the numerous questions they raised. The latter
have helped a lot in clarifying concepts and we hope the future students will keep asking questions,
and providing critics to these notes, which are doomed to evolve, hopefully increasing in clarity.
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2.1

Phase space

Let’s consider a system entirely specified by N degrees of freedom X = (x1,x2,...,x5). The N-
dimensional space, in which one specific microscopic state, or microscopic configuration of the
system, is represented by the point of coordinates (xy,x3,...,xy) is the so-called phase space. For
a gas of mono-atomic molecules, the degrees of freedom would typically be the positions and
velocities of the molecules. For a magnet, it could be the magnetic polarization of each atom.
For a polymer, one would need to take into account the constraints imposed to the positions and
velocities of the monomers by the links joining them. For a port-folio of market shares, it could be
the price of those shares. Note that the coordinates x; do not need be real numbers; they can be
integers ; they can be bounded or not. Identifying the relevant and useful degrees of freedom is a
matter of educated choice. Fundamental laws of physics stemming from invariance properties and
symmetries are very useful in this matter. When dealing with less conventional systems, such as
biological or social ones, deciding of the relevance of such or such degrees of freedom is a crucial
step of the analysis.

—

The evolution of one system, starting from an initial condition X (0), is given by a dynamical

— —

operator 2, which prescribes a unique X (t), given X (0) and time ¢ :
X(0) = X(1) = 2(X(0),1). (2.1)

This evolution is represented by one trajectory in phase space and each initial condition will lead to
a different trajectory (see fig. 2.1-left).

Performing a measurement at time ¢ provides a number, O(¢), also called an observable, which
depends on the state of the system at time 7 : O(r) = O'(X(1)).

Now, consider a glass of water. Its volume, its temperature, its pressure are everyday concepts,
which can be measured easily. But how are they related to the instantaneous state of the system
(position and velocities of all the water molecules) at the time of the measure ? This is by far
not obvious ! Can one compute them and establish relations between them ? It seems clear that
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FIGURE 2.1 — Artistic view of the N-dimensional phase space dynamics with (left :) two trajectories,
(right :) many trajectories, starting from different initial conditions

following the trajectory of the system in phase space, that is the trajectories of all the molecules in
the real space from some ancestral initial condition is hopeless. This is also not what one wants. It
would be perfectly satisfactory to know what is the typical value of the volume for a certain amount
of water molecules, at a given temperature and under given pressure conditions.

The goal of statistical physics is precisely to give a precise meaning to the above concepts, such as
temperature, pressure, ... and provide a way to compute the typical or average values of observables
without computing the details of the microscopic dynamics. More generally one is interested in
the statistical properties of the observables, including their fluctuations, their temporal and spatial
correlations.

To do so, one must replace the dynamical description by a statistical one in order to give a precise
meaning to the concept of average.

Micro-state density

Let’s consider a very large number .4 of systems with different initial conditions X, (0), taken
randomly, according to some distribution pg ()_f ). Each initial condition leads to a different trajectory,
and at time 7 the .4 systems are in states X, (¢), which define a new distribution of states p(X,7)
(see fig. 2.1-right). Namely, the probability P that one system, &, is in the vicinity of a state X is
given by :

P ()?a(z) € F(;)?erf(D = p(X,1)dX. 2.2)

The probability density p(X,¢) in general depends on the choice of the density py(X). As a
probability density, it should be normalized such that [ p(X;r)dX = 1, where the integral is
computed over the whole phase space.

Proposition 2.2.1 — Conservation of the probability density. The probability density obeys
the conservation equation :
a = = d}? = N a V
7? +divy(pV) =0, where V = e and divy(pV) = Z a@(il,

(2.3)
i=1
which simply tells that, at a fix position in phase space, the density in a given volume only evolves
through the fluxes pV across its surface. As a result the evolution of p(X,¢) along a trajectory is
given by :

Dp dp

o =5+ (V.V)p=—diva(V)p, 2.4)
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which says that the volume containing a fraction n of trajectories dilates and compresses according
to divy (V).

One simple way to derive the above result is exactly analogous to the way the conservation of mass
is derived in hydrodynamics. The fraction of trajectories n contained at a time ¢ in an arbitrary
volume of phase space v is simply given by :

n= / p(X;t)dX (2.5)

Because no trajectories suddenly appear or disappear, the variation of » is entirely given by the flux
of trajectories through the boundaries of the volume v. Hence :

d ; L
n_ dX / V-E) dxX = / —divy(pV)dX 2.6)
dl‘ )

with §, the unit vector normal to and pointing outward the surface ¢ of the volume v and where the
last equality comes from the Green-Ostrogradsky theorem.

Ensemble average

One can now define a proper averaging procedure. The ensemble average value of the observable
O(t) = O(X (1)) at time 1 is given by

(0) (1) (/V Z O Xt / dXp(X,1)0(X) (2.7)

Note that in this last formula, the observable is computed at all points in phase space, independently
of the dynamics, while the dynamics is encoded in the evolution of the probability density. This is
the essence of any statistical physics methods. Let’s recall that p(X,7) in general will depend on
the statistical ensemble of systems selected at t = 0.

Steady state

Under certain circumstances the probability density may evolve towards a stationary or steady
state distribution py, (X ) which does not evolve anymore (see fig. 2.2). The .4 systems still evolve
according to the dynamics, but in a way that their distribution in phase space remains identical to
itself. One also talks about the invariant measure of the dynamics.

Finding a steady state distribution consists in solving

Ipss(X,1))
ot

When the steady state distribution exists, one sees from equation 2.7 that the average value of any
observable become time-independant.

= 0. 2.8)

A steady state measure may not exist
When it exists, it is not clear that it is unique (it a priori depends on the initial distribution)
In general, it can be a very complicated function over the N-dimensional phase space.
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FIGURE 2.2 — Sketch of the probability density in phase space converging towards the steady state
distribution

Ergodicity

The ergodic hypothesis consists in assuming that in a steady state, averaging the instantaneous
values taken by an observable as a function of time on a given system converges, in the limit of
a very long lasting measurements, towards the averaged value computed from the steady state
distribution. In other words, the value obtained from a typical experimental measurement can be
theoretically computed, without integrating the dynamics, provided that the system has reached a
steady state and that the corresponding steady state distribution is known. This is statistical physics !

Oup =7 [0t~ (0) = [ a%py(R)6X) 2.9)

In general it is extremely difficult to prove the ergodicity hypothesis for a specific dynamics.
Obviously the dynamics must have a steady state measure. Second, the steady state measure should
be unique or, if not, it should attract the vast majority of initial conditions. It is mandatory that if
the initial density is within the support of the steady state measure, than the dynamics converges
towards it. With such properties of the dynamics, it becomes reasonable to consider that any system,
starting from a reasonable initial condition, will essentially explore the phase space according to
the steady state measure. In other words, considering a compact set of initial conditions, it should
be well stir all across the phase space to finally map the steady state measure. In that case, the
temporal average is dominated by the average over the steady state distribution.

p) Statistical physics may also be interested in non-steady phenomena, typically the way a system
relaxes to the steady state. In that case, it is quite clear that the steady state distribution cannot
be used. The way to proceed then is to average over the distribution of initial conditions. But
how to decide what is the distribution of initial conditions ? One way of doing is to fix some
control parameter of the dynamics, wait for the steady state to be established and then suddenly
change (one also says "quench") the system to some other value of the control parameter. The
system will relax to a new steady state, starting from a known initial distribution, namely that
of the steady state before changing the control parameter of the dynamics.
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Hamiltonian Dynamics

We now specify a particular dynamics, namely that of a classical system of N particules. For a
physical space of dimensionality d, Each particle k is described by its position (1), g and its
impulsion p(_1)4,_rs- The phase space has thus 2Nd dimensions. The system is described by its
Hamiltonian H({q;, p;}), that is its energy, and obeys the dynamics prescribed by the Hamilton
equations. For i € [1,dN] :

0H
gi = I (2.10)
. OH

p=-5 @2.11)

In most situations, the Hamiltonian takes the form H = Z L +V({qi}), where V is the interaction

potential. The equations then take the form of the s1mple Newton equations :

gi="2 (2.12)
m
v
pi=mgi=——=—=F. (2.13)
a%'

Any observable A(t) = A({qi(t), pi(t) }) then evolves according to :

0A
dpi

JH; JA  JH; JA

A= Zq, +p, fo—%fz—{H,A}. (2.14)

where the last notation is called the Poisson bracket. It is a linear differential operator and has all
the standard properties of such an object.

In particular, one sees, taking A = H, that %I = 0; the total energy is conserved. One can show that
this is a direct consequences of the invariance under translation in time of the dynamics. As a matter
of fact, a very general theorem called the Noether’s theorem (see Wikipedia) states that a conserved
quantity is associated to each continuous symmetry under which the dynamics is invariant. Classical
examples are the total impulsion and the total kinetic momentum, which are respectively associated
to the translational and the rotational invariance in physical space.

As a consequence, the dynamics in phase space is constrained to a manifold where such conserved
quantities are fixed by the initial conditions (see fig 2.3)

H=E,

FIGURE 2.3 — Hamiltonian dynamics in the 2Nd dimensional phase space.
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In the case of an Hamiltonian dynamics, one can simplify the law of conservation for the probability
density, discussed in the proposition 2.2.1. First one has

o oev v .9p L dp
(V-V)p—;qzaqi+p,api =—{H,p}. (2.15)

Second, and most importantly, div 2Nd(‘7) =0:

. Sy gi\ 8q, 8p, B 0*H B d*H -
AtV awa (V) = divana (Pi> B Zl: Jai opi Zl: g0 g | (2-16)

As a result the conservation of the probability density takes now a very simple form

ap
T {H,p}. (2.17)

and is called the Liouville equation. It expresses the fact that the volume in phase space is conserved
along a trajectory : there is no condensation of the density p.

We conclude this chapter by discussing the nature of the steady state distribution in the case of
Hamiltonian dynamics.

Proposition 2.6.1 — The steady state distribution of Hamiltonian systems is uniform. On one
hand the Liouville equation states that the volume of phase space is conserved. This implies that
the weights accorded to the different parts of the energy manifold by the dynamics are identical.
As a result the uniform measure remains uniform; it is a steady state solution. Is it the only
solution ? Suppose the measure is non uniform, while the dynamics is stirring the phase space
(ergodic hypothesis). Because the volume of phase space is conserved, any region of phase space
will evolves simultaneously towards denser and less dense regions. This phenomena will amplify
until the phase space is essentially separated in an infinitely dense and an infinitely loose region,
which in turn break the ergodicity hypothesis. So the uniform measure is the only one that satisfies
simultaneously the ergodicity hypothesis and the conservation of volume in phase space.

However, first the time reversibility of the Hamilton equations prevent the steady state distribution
from being attractive. At best p(¢) is close to the steady state density py,, most of the time, so that
temporal averages are dominated by the steady state distribution. Second the ergodic hypothesis is
only a working hypothesis... As a matter of fact there even is a theorem, dating back to 1913, called
the Plancherel-Rosenthal theorem or the No-go theorem (sic !), which states that an Hamiltonian
dynamics cannot be ergodic.

p) Another theorem, by Sinai, establishes that a gas of hard sphere in a box is ergodic in a weak
sense...

p) Inpractice, the non ergodicity of the Hamiltonian dynamics, namely the existence of many
tiny regions of phase space that are never explored, is wiped out by the limited resolution of
any realistic observation, as well as by the presence of any source of external noise, which
adds to the dynamics.

Leaving aside these highly technical and conceptual issues, we shall resume this chapter in saying
that for an Hamiltonian system, the steady state distribution is uniform over the manifold on which
the system is ascribed to evolve by the conservation laws.
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In the light of what we have said in the previous chapter one can classify sub-fields of statistical
physics along the following lines. The system of interest obeys an Hamiltonian dynamics — or a
dynamics which share the same essential properties — or not. One is interested in the steady states
of the system, or not. The goal of the following paragraphes is to provide the reader with a very fast
overview of topics and keywords.

Equilibrium Statistical Physics

Equilibrium statistical physics deals with the steady states of Hamiltonian — or equivalent — dy-
namics. One is interested in the equations of state of the system, namely explicit relation relating
averages of macroscopic quantities. Computing the fluctuations of the macroscopic quantities, one
accesses the linear response functions of the system : the susceptibilities, compressibility, heat
capacity and so forth. Many system of interest exist in several phases, depending on the external
conditions. This is the case of particles systems with their gas-liquids-solids phases, but also that
magnetic systems with their paramegentic-ferromagnetic phases. Studying the phase-transitions
is one central topic of equilibrium statistical physics. We shall see that in some cases, when the
transition are critical, many very precise prediction can be done, which are robust for large classes
of different microscopic systems. One say that they belong to the same universality class. Such
transitions can be studied at the level of mean-field approximations, which is a first instructive
approach, often the only easy one. One can also investigate the role of the so-called critical fluctua-
tions, which take place at the transition. This ultimately leads to the study of the renormalization
group theory.

The system of interest can either be ordered or disordered. The archetype of ordered systems are
crystals, without impurities. The particles are stuck on a regular lattice and the positional degrees of
freedom are limited to vibrations around the lattice nodes. One then study the statistical properties
of these vibrations, the phonons. One can also forget about the positional degrees of freedom
and focus on the remaining degrees of freedom of interest, such as the magnetic momenta, which
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may interact in various ways. The introduction of disorder can take two forms. It may consist in
impurities inside de crystal, which alter the interaction amongst the components of the lattice ; this
is the so called physics of quenched disorder, the epitome of which are the so called spin-glasses.
Alternatively one can have structural disorder : the particles are no more sitting on a lattice ; they
move in the continuous space. This is the field of the liquid state theory and glasses. Amongst the
theories and methods associated with the description of equilibrium disordered systems are the
so-called replica theory, and the cavity method.

Out-of-Equilibrium Statistical Physics

It is clear that this field is ill-defined since there are at least two very different ways of being out
of equilibrium. The dynamics is Hamiltonian but the phenomenon of interest is unsteady or the
dynamics is neither Hamiltonian, nor similar to it.

Let’s focus on the first situation, where the microscopic dynamics has all the properties of a
Hamiltonian dynamics, but the system is not in the steady state. This is what is often meant by
Out-of-Equilibrium Statistical Physics.

First, one can be interested in the relaxation towards equilibrium. Namely, one starts with an initial
condition, out of the steady state, and considers how the system relaxes to the equilibrium steady
state. This is the field of fluctuation-dissipation theorems.

Second the system can be permanently driven out of equilibrium. Typical examples are the transfer
of heat between a hot and a cold reservoir, or the conduction of electrons, under a difference of
electric potential. In such situations, one is interested in the currents induced by the external forcing
and their fluctuations. Note that these currents can be stationary themselves ; one then talk about
non equilibrium steady states (NESS). This should not be confuse with the equilibrium steady state.

The tools used to study out of equilibrium dynamics are numerous. Starting from the microscopic
Hamiltonian dynamics, one can derive evolution equations for the macroscopic quantities, assuming
that they vary slowly, both in time and space.This is the so-called kinetic theory, and its long-
range hydrodynamics developments. The first and most famous equation of kinetic theory is the
Boltzmann equation.

It is often convenient not to start from the microscopic dynamics. For instance, consider a micron-
sized particle in suspension in a fluid, which exhibits Brownian motion. It is known that this motion
comes from the collisions of the molecules composing the solvent. On one hand they kick the
particles randomly, on the other side they induce a drag force, via the viscosity of the fluid. This kind
of description where the fluid is simultaneously considered as a continuum medium responsible for
the drag and as a source of noise leads to an effective stochastic description called the Langevin
dynamics. The fact that, at the molecular level, the dynamics are Hamiltonian, imposes specific
constraints on the form of these dynamics, which must satisfy a fluctuation-dissipation relation.

Finally, one can consider even more abstract, or effective, dynamics, which are then described
by random processes, in which the system jumps from one configuration to another with certain
transition rates. These processes obey a master equation. Here also, this type of equations must
satisfy some constraint, the so called detailed balance, to ensure its connection with Hamiltonian
dynamics.

Both the fluctuation-dissipation relation and detailed balance encode the temporal reversibility of
the Hamiltonian dynamics.
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Complex systems

Ultimately, one can relax the constraint of an underlying Hamiltonian dynamics. This is actually
mandatory, if the degrees of freedom of interest are say stock-markets or neurons or birds... For such
systems, which we could called complex system, none of the results established for equilibrium
systems or standard non equilibrium situations hold. Concepts such as temperature or pressure are
even not clearly defined. Still one may be interested in computing averages and fluctuations of
macroscopic quantities... and one must therefore invent their statistical physics...






4.1

In the previous chapter, we have seen that the essence of statistical physics consist in replacing the
integration of the dynamics to compute averages over time — which is what the experiments report
— by a statistical average of the values taken by the observable in phase space, weighted with an
appropriate distribution. The present chapter aims at recalling some basic tools and concepts that
are useful when dealing with random variables. We shall also take this opportunity to present the
Legendre transform, which has nothing to do with random processes, but which happens to be a
major tool of statistical physics and thermodynamics.

Random variables and Generating Functions

Let’s consider a random variable X with real value and its probability density p(X). One defines
the n-th order moment of X as

;M:awz/xw@mn @.1)
Définition 4.1.1 — Moment-generating function. The moment-generating function of X is
defined as

My (k) := <e’<"> . kER, 4.2)

wherever this expected value exists.

The reason for defining this function, also called the characteristic function, is that it can be used to
find all the moments of the distribution. Indeed, writing the series expansion of ekX, one gets

Mx<k>:<ekx>:1+k<x>+k2§f2> k3§{f3>+...+k"r<f">

K, ks ku
21 3 ’

T (4.3)

4.4)
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Hence

=k . d"Mx (k
M) = Y s, with g, = T (4.5)
=1 dk" 1o
One also defines the centered momenta, as f1, := ((X — u1)"), which characterize the distribution,
after centering it on the average of X.

Définition 4.1.2 — Cumulant-generating function. The cumulants of a random variable X
are defined using the cumulant-generating function, which is the logarithm of the moment-
generating function : Ky (k) = log (Mx (k)) = log (¢**).

The cumulants «;, are again obtained from a power series expansion of the cumulant generating
function :

0 n n

Kx(k)=Y K,,]i', with K, = d"Kx (k) (4.6)
w1 M dk" 3=

The first cumulant is the expected value ; the second and third cumulants are respectively the second
and third centered momenta (the second centered moment is the variance) ; but the higher cumulants
are neither momenta nor centered momenta, but rather more complicated polynomial functions of
the momenta. For instance fly = ky + 3K3.

Proposition 4.1.1

— If two distributions have the same moment or cumulant generating function, then they are
identical at almost all points.

— The cumulant generating function, if it exists, is infinitely differentiable and convex, and
passes through the origin.

— The cumulant-generating function exists if and only if the tails of the distribution are majored
by an exponential decay.

For statistically independent random variables X and Y,
Kx.y (k) = log<ek(X+Y)> =log <<ekX> <ekY>) =log <ekX> +log <ekY> = Kx (k) +Ky(k), (4.7)

so that each cumulant of a sum of independent random variables is the sum of the corresponding
cumulants

Entropy of a distribution, joint and marginal distributions
Let X be a random variable with probability density p(X)

Définition 4.2.1 — The Kullback-Leibler divergence. The Kullback-Leibler divergence of
the probability density p(X) with respect to the probability density 4(x) is a functional defined
as

Dip||h] = /dxp(x) log (’28) 4.8)

It measures how different is the probability density p(x) from A(x). In particular it is always positive
and it is zero if and only if p (x) = h(x).
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Définition 4.2.2 — Entropy. The entropy of the probability density p(X) is defined as

Slpl =~ [dxp(x)log(p(x) .9)

It provides a characterization of the shape of the probability density. The larger the entropy the
larger is the width of the distribution.

p) Please mathematician friends forgive the fact that the above definition includes taking
the log of a dimensional quantity. One way of "solving" this problem, would be to see
S(p) = —D(p||un), with u, the uniform measure. This is however not correct because the
uniform measure cannot be normalized on unbounded domains... Assuming our friends keep
their eyes closed, one could write y = i and obtain

Slp) = [dxp()tog(=) ~ Dipllu).

From this we see that S is indeed maximal when p is uniform, actually infinite if the domain
is unbounded, and that S decreases when going away from the uniform measure, namely
when the width of p decreases. Also S[p] can be both positive and negative. If one feels
uncomfortable with such little arrangements, he should come back to the case of discrete
sets of configurations, where everything is well defined (see the discussion about the limiting
density of discrete points on wikipedia.)

Up to now, we have only introduced random variables with values in R. In order to compute
averages like the ones introduced in the previous part (equations 2.9), we’ll need to extend the
above formalism to random variables in RY, where N is the number of degrees of freedom of the
system of interest.

The joint probability density p(X) = p(Xi,Xa,---Xy) is a prodigiously rich information about the
system, since it describes the probability of all possible micro-states. In many cases, we’ll see that
one is often interested in a reduced information, namely the probability density of certain degrees
of freedom, letting the others be anything.

Définition 4.2.3 — Marginal distributions. For simplicity and for visualization ease (see
figure 4.1), let’s consider a random variable X = (X1,X2).

The probability that X; € [X;;X; +dX] and X» € [X2; X, +dXp] is :

P(Xl S [Xl;Xl +dX1] ,Xp € [XZ;XZ —i—dXzD = pz(Xl;Xz)dxldXQ, (4.10)
where p(X;;X>) is the joint-distribution of (X, X>).
The probability that X; € [X;;X; +dX;], VX, is :

P(Xl € [Xl;Xl +dX1] ,VXz]) = </p2(X1;X2)dX2> dX; = pl(Xl)dXI, 4.11)

where p; (X)) is called the marginal distribution of X;. By symmetry one defines p;(X;), the
marginal distribution of X,. Note that marginal distributions are naturally normalized.

The marginal distribution should not be confused with the conditional one. The probability that
X, € [X2;Xa 4 dX3], knowing X; is :

P(Xz S [Xz;Xz —|—dX2] ,knowingXl]) = p(X2|X1)dX2. “4.12)


https://en.m.wikipedia.org/wiki/Limiting_density_of_discrete_points
https://en.m.wikipedia.org/wiki/Limiting_density_of_discrete_points
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FIGURE 4.1 - Joint (the surface p,(x,y)), marginal (integrated area p;(x)) and conditional distribu-
tion (the weighted top curve p(y|x))

where p(X;|X)) is called the conditional probability of X,, knowing X;. By symmetry one defines
p(X1]X>) the conditional probability of X;, knowing X;. One clearly has :

p2(X1,X2) = p(Xa2|X1)p1(X1) = p(X1[X2)p1(X2), (4.13)

from which one easily checks that the conditional probabilities are also normalized.

p) If the variables X; and X, are independent, then knowing anything about X; will not condi-
tion the distribution of X,. Hence for two independent variable p(X2|X;) = p1(X2), and

p2(X1,X2) = p1(X1)p1(X2).

R If pz(X] ,Xz) = P1 (X])p] (Xz) and hz(X] ,XQ) = h] (X])]’l] (XQ), then the Kullback-Leibler
divergence is additive :

D(p2(X1,X2)||h2(X1,X2)) = D(p1(X2)[[h1(X2)) + D(p1(X1) |1 (X1))

4.3 Gaussian variables

Let X be a random variable with a Gaussian distribution G(i, o) :

_ 1 (x—p)?
p(x)—mexp— 557 (4.14)

The prefactor \/27 ensures that the distribution is normalized : [*,_ p(x)dx = 1.

Two very useful relations are the so-called Hubbard-Stratonovich transformations :

52 o2k2
- i = 4.1
27:0_2 / xp[ kx] dx = exp< 5 ) 4.15)
2 272
) ok
\/ZT exp[ j:kx] dx==o kexp< 5 > (4.16)
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p) Note that the argument in the exponential on the right-hand side is always coming with
a positive sign if x is real. The only way to obtain a negative sign is to apply the same
transformation with x being a pure imaginary number. It is actually in this context that the
transformation was introduced ; and you may be surprised to learn that it was introduced to
transform the simple-looking right-hand side into the less simple looking left-hand side. But
this is another story....

The moment generating function exists and is equal to (direct consequence of the Hubbard Strato-
novitch transformation)

My (k) = () = eHker oK

The cumulant generating function is thus simply the quadratic polynomial

Kx (k) =logM (k) = pk+ Jo%k*

Thus only the first two cumulants, namely the mean (X) = u, and the variance k, = I, = var(X) =
<(X —(X >)2> = o2 are nonzero. This is actually an elegant way of computing the mean and the
variance.

The entropy of the distribution S(c) = § + log(v2w0?) indeed increases with the distribution
width as characterized by its variance.

What is remarkable is that the normal distribution is the only absolutely continuous distribution
whose cumulants beyond the first two (i.e., other than the mean and variance) are zero. It is also the
continuous distribution with the maximum entropy for a specified mean and variance.

Central Limit Theorem

The Gaussian distribution discussed above is key to statistical physics because it enters into the
simplest version of the Central Limit Theorem (CLT). This theorem establishes that, in most
situations, when independent random variables are added, their properly normalized sum tends
toward a Gaussian distribution even if the original variables themselves are not normally distributed.

Let (Xi,...,Xy) be a set of independent and identically distributed random variables drawn from
distributions of expected values given by u and finite variances o2. Consider the normalized sum
Sy = ﬁZX,- of these random variables, also called the empirical mean of X. Because the X; are
random variable, Sy also is.

For all N, the linearity of the average and the variance ensures that (Sy) = u and Var (Sy) = 62/N.
In practice, one does not have access to (Sy) but only to a finite number of realizations and one
would like to know how they are distributed. Intuitively, the larger N, the closer to u should Sy be.

Proposition 4.4.1 — Law of Large Numbers. The law of large numbers indeed states that

lim Sy = u,with probability one. 4.17)

N—roo

Proposition 4.4.2 — Central Limit Theorem. The CLT precises the scaling in N in the following

way : Yy = i’;;% converges in law to the Gaussian distribution G(0,1).

The usefulness of the theorem is that the distribution of Sy approaches Gaussianity regardless of
the shape of the distribution of the individual X;, provided that its variance is finite.

The central limit theorem has a number of variants. In its common form, the random variables
must be independent and identically distributed. In variants, convergence of the mean to the normal
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distribution also occurs for non-identical distributions or for non-independent observations, given
that they comply with certain reasonable conditions, which guarantee that the contribution of any
individual random variable to the variance is arbitrarily small, for sufficiently large N, and that the
correlations are not long ranged.

Legendre-Fenchel transfrom

Définition 4.5.1 — Legendre-Fenchel transform. We define the Legendre-Fenchel transfrom
of a function A (k) as

I(s) = su./:p [sk —A(k)]. (4.18)

One particular and easy case to consider, although not the general case as we shall see below, is
, ‘227’21 > 0. It is therefore differentiable and, deriving the
element to be maximized, one finds s = % ‘ . Since % ‘ . s @ monotonic and growing function of k,
it is invertible and k(s) is the locus of the unique maximum. The Legendre-Fenchel transform of
A (k) is then the less general Legendre transform :

dA

I(s) =sk(s)—A(k(s))) with s(k) = A and k(s) its inverse. (4.19)

when A (k) is a strictly convex function

A(k)

R
~\ &

slope=s(k)

FIGURE 4.2 — [llustration of the Legendre transform.

If A (k) is strictly concave, the same construction holds, provided that one defines I(s) =
inf, [sk — A (k)].

Proposition 4.5.1 — Properties of the Legendre transform.
In the specific case, when A4 (k) is strictly convex, A (k) is the Legendre transform of (s).

Indeed :

dI dk dA dk
hence
A(k) =ks(k) —I(s(k)), with k(s)= dl and s(k)its inverse (4.21)

ds’
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There is thus a systematic correspondance : I'(s) = k <=> A’(k) = s, as illustrated on figure 4.2

It is also easy to check that :

d*A d?1

2 =L 10)= A, A(0) = ~uin. (4.22)

p) These propositions do not hold in the general case of the Legendre-Fenchel transform.
Consider the case where A (k) is not differentiable in one point (see figure 4.3). There is no
more a one to one correspondance between /(s) and A (k) : all function with the same convex
envelope I™*(s) share the same A (k) with a singularity for k corresponding to the slope of the
straight part in the convexe envelope.

4*_
—
\/‘ X

FIGURE 4.3 — Illustration of the Legendre-Fenchel transform in the case of a non differentiable

A (k)

We shall see now why the Legendre-Fenchel transform, and its specialized version, the Legendre
transform are so present in statistical physics and thermodynamics.

Large deviations, Gértner-Ellis and Cramér’s theorems

In the context of statistical physics, we shall be interested in the statistics of some physical quanti-
ties, averaged over the N components of the system. Let Sy be such a random variable indexed by
the integer N. One is interested in the statistical properties of this variable, namely its probability
distribution P(Sy = s) when N is very large.

Définition 4.6.1 — Large deviation principle. One says that P(Sy = s) satisfies a large
deviation principle with rate (s) if the following limit exists :

1

I(s) = —Al[im N InP(Sy =s), inother words P(Sy =s)~ exp|—NI(s)]. (4.23)
—>00

The function I(s) is called the rate function or the large deviation function. Be aware that the

same wording sometime refers to I(s), sometime to —I(s).

Figure 4.4 provides an illustration of such a rate function, and the associated P(Sy = s) for different
N. One sees how the distributions becomes sharper and sharper around its most probable value,
which corresponds to the minimum and zero of the rate function. Essentially, if the variable Sy
satisfies a large deviation principle, the fluctuations outside the most probable value decreases
exponentially fast to zero with N and the rate function tells us how exponentially fast. This is of
course of primary importance to guarantee that most probable value are good estimates of the
macroscopic variable of interest.
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FIGURE 4.4 — Illustration of a Large deviation function and the associated variation of P(Sy = s),
with N and typical realization of Sy converging to its most probable value.

The theory of large deviations aims at establishing when a large deviation principle exists for a
given random variable Sy, and at deriving the expression of the associated rate function.

In some rare case, one can compute explicitly P(Sy = s) and derive the rate function from its
asymptotic development at large N. In general, however, P(Sy = s) cannot be computed. This is
where the large deviation theory becomes useful. A key theorem of the theory is the Gértner-Ellis
theorem :

Proposition 4.6.1 — Géirtner-Ellis Theorem. One defines the scaled cumulant generating function
of Sy by the limit

—km L — im L stN>
A(k) = lim Ky, () = lim + log <e . (4.24)

If A (k) exists and is differentiable for all k, then Sy satisfies a large deviation principle, with a rate
function I(s) given by the Legendre—Fenchel transformation :

I(s) = Sl;p[ks —A(k)] (4.25)

It is instructive to consider the following heuristic argument for the expression of the rate function.
Assuming the existence of the large deviation principle, one has in the limit of large N

P(Sy = s) =~ exp[—NI(s)], (4.26)
and

<ekNSN> z/eN[ks—l(s)]ds%eNsupS[ks—l(s)], 4.27)

where the last equality results from the celebrated saddle-point, or Laplace’s approximation (see
below). One thus finds that A (k) is the Legendre transform of /(s) and therefore, if I(s) is strictly
convex, that /(s) is the Legendre transform of A (k)

A (k) = suplks —I(s)], and I(s) = sup[ks — A (k)]. (4.28)
s k

We thus see that the Giértner-Ellis Theorem is essentially a consequence of the large deviation

principle combined with the Laplace’s approximation and that the Legendre-Fenchel transform

appears into this theory as a natural consequence of Laplace’s approximation.
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p) Here we have used the Laplace’s approximation in its crudest form. At the next order one has,
in the limit of large N, for a function g with its maximum in s* :

i’ . * N 1A\ (o H)\2 * 2r 1/2
[ s MR [o B g = e (N gﬂ(ﬁ)) (4.29)

Nota Bene : The rate functions obtained from the Gértner-Ellis Theorem are necessarily strictly
convex. Unfortunately rate functions are not all strictly convex ; some may even have local minima
in addition to global ones... Those rate function can thus not be found using the Gértner-Ellis
theorem...

The Girtner-Ellis theorem best applies to an extension of the Central Limit Theorem, called the
Cramér’s theorem.

Proposition 4.6.2 — Cramérs Theorem. Like for the central limit theorem, let (Xj,...,Xy) be a
set of (i.i.d) random variables drawn from distributions of expected values given by u and finite
variances ¢ and consider the normalized sum Sy := %ZX,' of these random variables. The theorem
states that Sy satisfies a large deviation principle and that the rate function

I(s) = SIzp[ks — Kx (k)], (4.30)

where Ky (k) is simply the cumulant generating function of the X;’s.

The proof is the simple result of the fact that for (i.i.d), Kys, (k) = NKx(k), and therefore that
A (k) = Kx (k).

The rate function /(s) inherits some interesting properties from those of the cumulant generating
function A (k) = Kx (k). Remember that the cumulant generating function of a random variable is
always convex (although not strictly convex).

* A(0) =0 => I(s) > 0; proof : 1(0) = sup,[0k — I(s)] = —inf[I(s)].
* A'(0)=p => I'(1) =0: p is the minimum of the rate function
* A"0)=0%=>I"(u)=1/c>.

The Central Limit Theorem states that, for any well behaved distribution for the X;’s, I(x) has a
parabolic shape of width % around the maximum x = y. It is clear that further away from the
maximum, the parabolic shape is not guaranteed unless strictly speaking when N — co. The above
theorem provides a way to compute the deviations, far away from the maximum, hence the name
"Large deviations" of the theory

m Exemple 4.1 — The case of Gaussian variables. Let the X;’s obey a Gaussian distribution of
mean 1 and variance 6. We have seen that Kx (k) = log (e*¥) = uk+ 162k*. Hence

* * . dKX % s — ,u
I(s) = supylks — Kx (k)] = k*s — Kx (k*), with i e =8 or k' = = (4.31)
1 (s—p)?
I(s) == . 4.32
In the case of Gaussian variables, the large deviation function is a parabola itself. "

m Exemple 4.2 — The case of Poisson variables. Let the X;’s be integer variables obeying a

Poisson distribution p(x) = M)f; * One can show that (X) = A and the variance var(X) = A. The
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cumulant generating function Ky (k) = log (¢X) = A (e —1). Hence

dKx 2y
dk A

1(s) :slog(%)—s—i-?t. 4.34)

I(s) = supylks — Kx (k)] = k*s — Kx (k*), with

=s, or k*=log(

L=, (4.33)

We here see that the large deviation function is certainly not a parabola. It is however easy to check
that its maximum takes place at s = A and that the parabolic shape around that maximum has width

VA, as prescribed by the CLT (see figure 4.5). "
p(X)
15}
10
05[
2 4 6 8 10 * % 2 4 6 8 10°

FIGURE 4.5 — Poisson distribution on the left and large deviation function for a sum of Poisson
variables together with the parabola provided by the CLT (dashed) on the right; (here A = 5).



In this chapter, we shall discover the very basic concepts of statistical physics in a very general
context.

For now, we forget completely the underlying dynamics and consider a system of N individual units
x;, defining the configurations X = {x; ;/—.x}, which are sampled from a probability distribution
h(X). One can think of a chain, or a polymer, made of N links with orientations 6;, or the trajectory
of a drunk man made of N steps x;, or a set of spins s; = =1, or NV beads distributed in g small boxes
etc etc...

Now imagine, one takes many configurations of such a system and for each configuration, mea-
sures a macroscopic quantity Ay (X). Typical examples are the energy, the kinetic energy, or the
magnetization of a system ; but one can think of many others such as the velocity of a birds flock,
or the valorization of a stock market etc... Such macroscopic quantities often take the form of a
sum over the N elementary units of the corresponding microscopic quantity. In the following Ay is
supposed to be additive and extensive.

Définition 5.0.1 — Additivity quantity. A macroscopic quantity A is said to be additive
with respect to two subsystems with configurations {x;;—_,} and {x;j—p+1. n} if A(X) =
A({xii=1..n}) +A{Xij=nr1..8})-

Définition 5.0.2 — Extensivity quantity. A macroscopic quantity A is extensive if the ratio
(A)/N, reaches a constant in the limit N — oo. In the following, we shall use capital letters for
extensive variables and small letter for their intensive counterpart, that is when they are divided
by N.

Mathematically speaking additivity does not ensure extensivity, and extensivity does not require
additivity. However, in most cases encountered in physics, additivity does imply extensivity. Fur-
thermore, in many models of physical systems, it is usually the non-additive part of the macroscopic
quantity of interest which diverges in the limit of large N and is thus responsible for the non
extensivity.
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The same value of Ay will be obtained from many different configurations. Think of playing dices,
say with two non biased dices : the probability of getting (6,6) is the same as that of getting any
other pair, say (3,4), but the probability that the sum S = 12 is much lower than that S = 7, which
can be obtained from any of the combinations (1,6),(6,1),(2,5),(5,2),(3,4),(4,3).

The typical object of interest in statistical physics is the probability of observing a certain value A
of Ay. It is given by the statistical weight of the configurations X, such that Ay (X) = A

P(AN:A):/dXh(X)S(A (X)—A), 5.1)

that is the normalized histogram of the values taken by Ay, in the limit of a very large sampling.

Two illustrative examples

Let’s illustrate how the tools introduced in the previous chapter can be used, or not, to determine
the probability of a macroscopic quantity, in the present case the total magnetization of a system of
spins.

= Exemple 5.1 — Independent spins. Consider s = (s1, 52, ...,5x5), a set of N independent random
spins, taking the value -1 or 1 with equal probability. The total magnetization My, for a configuration
with a fraction ¢ of spins pointing upward (s; = +1), is given by :

N
My =Y si=(gNx (+1)+ (1 —g)N x (=1)) =N(2¢—1). (5.2)
i=1

Since the spins are independent, and each spin takes its value +1 with equal probability, all
configurations of spins {s;} are equiprobable and their probability is simply

1

Po({si}) = KoV) (5.3)

where Ky (N) = 2V is the total number of configurations. The statistical weight of the configurations,
which leads to the observation of a total magnetization My = Nm is thus simply given by the
relative number of configurations with a fraction g of spins up :

Qm,N) 1 N!

. 1
FolmM) ="y~ NN =gy M 9=t G

Using the Stirling approximation InN! ~ NInN — N, one finds for large N the form

1 1 l-m 1—
Po(m,N) ~ e V0" with  Iy(m) =In2+ —;mln J;m+ 2m1n 2'” (5.5)

One sees that Py(m,N) satisfies a large deviation principle, with Iy(m) the rate function.

This suggest, that we could have found it using the Gértner-Ellis theorem :
. . 1 NiMy
Io(m) = sup(km — Ao (k)), with  Ao(k) = lim ~ log [<e v >} (5.6)
k N—oo N

The spins are independent, so that the Cramérs version of the theorem holds and :

Ao(k) = log[cosh(k)] (5.7)
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Ao (k) is differentiable, which confirms the existence of the rate function Ip(m). A}(k) = tanh(k).
Solving for A)(k*) = m leads to :

k* = atanh(m) = 11 gHJ (5.8)
2 1—m
Io(m) = K'm—A(k) = 310 gL—i—flog(l — ), (5.9)

which is indeed (one line of calculus) the rate function found using the direct combinatorial
calculation. It is remarkable that there is no need of any combinatorial talent in this case.

Figure 5.1 provides an illustration of Iy(m), and Py(m,N). Note the dependance on N of Py(m,N).
Also note that here N = [100,1000,5000], which are ridiculously small values as compared for

instance to the Avogadro number... "

PmN)

O}é':n) 30
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FIGURE 5.1 — Illustration of (a) the rate function Iy(m), and the probabilities (b) Py(m,N) for the
magnetization per spin of N = [100, 1000, 5000] (color [blue, red, green]-ish), independent spins
(example 5.1)

m Exemple 5.2 — Fully connected spins. We now consider the case of N spins interacting with
each other. Each spins interacts with all others, but only through pairwise interactions : for instance
the probability of a configuration of 3 spins P(sy,s2,53) = f(s1,52)f(s2,53)f(s3,51) and we set
f(si,s;) = exp(%sis;). More generally, a configuration of N spins {s;} has a probability :

Z 88 Y sis;
Po({s;})oce" i P (5.10)

o M2
Since My =Y.si, My =N+ ¥ sis; and Pg({s;})oces(F 1.
i Lj#i
Normalizing the distribution, we finally get
MN

I112

Pa(fs}) = S0 with Ka(N)=Y e —/de(m,N)eN“T, 5.11)
Ka(N) =

In this case the configurations are not all equiprobable. A highly specific feature of their probability

is that it depends only on the total magnetization per spin. This happens because all the spins are

connected and it is a signature of what we shall later call mean-field like models.

Let’s now proceed to a direct calculation of Py (m,N) = Py(My = Nm,N).
Q(m,N) eNa% .

Py (m,N) = O (My({s; Nm) = (5.12)
( vl —m) =S
Using the same Stirling approxirnation as above for Q(m,N), one obtains
o Ko(N
Py (m,N) ~ e Ma™ — with I (m) = Ip(m) — =m*+ 1 0g a(N) (5.13)

2" Ko(N)
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Equations (5.11), (5.12) and (5.13) for the model of fully connected spins correspond to equa-
tions (5.3), (5.4) and (5.5) for the model of independent spins. Again one finds that the total
magnetization per spin obeys a large deviation principle. Before trying to compute it using the
Girtner-Ellis theorem, as we did in the case of independent spins, it is interesting to look at the
shape of the rate function I, (m). Its derivative

I,,(m) = Iy(m) — oom = %log :4_7: — am = atanh(m) — am (5.14)
Hence for @ < 1, I(m) has a single minimum in zero, while for o > 1, I(m) has two minima
+m™* and one maxima in zero (see figure 5.2). Note the interesting case of & = 1 : the rate function
has only one minimum, but it is extremely flat, as one can check that ;'(0) = 0. As a consequence
the distributions P; (m,N) are much broader.

0Iﬁm) P(m,N) P(m,N) P(m,N)
1 15 15
03
1 10 10
02)
5 5
o1
-io ~05 0.0 05 7d" -i0 =05 0.0 05 Td" - ﬁ_—wé%#idm -i0 =05 00 05 7d"
(a) (b) (©) (d)

FIGURE 5.2 — Illustration of (a) the rate function Iy (m) for o« =2/3,1,4/3, and (b),(c),(d) the
probabilities Py (m,N) for a = 2/3,1,4/3 for the magnetization per spin of N = [100, 1000, 5000]
(color [blue, red, green]-ish), independent spins (example 5.2)

Let us come back to the computation of I, (m) using the Girtner-Ellis theorem. The point is that,
this time, we can not use the Cramérs version of the theorem anymore. We thus write explicitly
N($m?+km)

Ko(N)

e

{si}

NEMN 1 / N(a™ tkm) _ / —N(Ia(m)—km)
(e" V) = ~ X0 dmQ(m,N)e"\* 2 = [dme . (5.15

One immediately realizes that the calculation of Ay (k) requires the knowledge of I, (m). In this case
the Gartner-Ellis theorem is of no use. Furthermore, should one insist to continue the calculation
using the Laplace approximation, he would find that

— for a < 1, Aq (k) is differentiable and Iy (k) = I (k) ...
— for @ > 1, Ay(k) is not differentiable in k = 0 and sup, (km — A (k)) only provides the convex
envelope of the correct I (k).

One should however not conclude too fast that the Gértner-Ellis theorem is useless. You may have
noted that also for the fully connected spin model, it is necessary to know Q(m,N), the number
of configurations with magnetization m for the independent spins model. Its large N behavior was
obtained in a straightforward manner, using the Cramers theorem... "

Partition and Thermodynamic parameter

We again consider a system of N individual units x;, defining the configurations X = {x;;—1.n},
which are sampled from a probability distribution 2(X ). We assume that the probability density of
observing a certain value A of the macroscopic, additive and extensive quantity Ay obeys a large
deviation principle with a rate function Iy(a) :

Po(Ay =A) = /dXh(X)S(AN(X) —A) oc ¢ NOIA/N) (5.16)
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We are interested in the statistics of the configurations of a part of the system, composed of n < N
degrees of freedom x = {x;;—1__,}, and that of the same macroscopic quantity measured on this

part, A, (x).
To do so, we will need to add two key hypothesis :

— h(X) factorizes : h(xy,...,xn) = h(x1, ..., xn)h(x, + 1, ...,xN).
— Ay(x) is independent of the {x; j—,+1,.~} degrees of freedom : A, (X) = A, (x).

We will consider essentially four situations :

1. The free setting : the whole system is free of any constraint.

2. The micro-canonical setting : a constraint is imposed on the total value of A in the form
An({xii=1,..n} FAN-n({Xii=nt1..N}) = Ao.

3. Two systems in contact : this is a direct extension of the previous case, in which the two parts
are considered as different systems (1) and (2), with degrees of freedom x = {x; ;-1 ,} and
¥ = {Yij=n+1..n}; the two systems share a fixed amount of A : A;(x) +A2(y) = Ao

4. The canonical setting : the system of interest is much smaller than the one it is in contact
with 1 K n <K N

The first case is straightforward to handle with :

— The probability density of a configuration X of the whole is by definition py(X) = h(X).
— The probability density of a configuration x of the part is obtained by averaging out the
external degrees of freedom, using the fact that 4(X) factorizes :

po(x) = / H1 dxh(X) =) (5.17)
i,i=n+1..

— The probability of observing A in the part of interest is
Po(A, = A) = / dx po(x)8 (An(x) —A) = / dxh(x)5(An(x) —A). (5.18)

In particular, Py(A, = A) obeys a large deviation principle with the same rate function Iy(a).

In this first setting, the whole system is free of constraints. We have however seen in the first
Chapter that systems obeying Hamiltonian dynamics conserve energy. This type of conservation
law imposes a constraint on the system : for any partition of the system into subsystems, the sum of
the energies of the subsystems must remain constant. This is the motivation for considering the
second setting.

The micro-canonical setting

The micro-canonical setting consists in imposing a constraint of the form Ay = A,, + Ay_, = Ao.
Among all the configurations X = {x; ;—;_y}, which are sampled from the probability distribution
h(X), those which do not satisfy the constraint have a probability zero to occur.

The probability of a configuration X of the whole, under the constraint Ay = Ay is thus simply

1

Pu(X;A0) = Zu(AoN)

h(X)S(An(X) —Ag), with Zu(Ag,N) = /dXh(X)S(AN(X)—AO).
(5.19)

Note that the normalization constant is nothing but the probability of A in the absence of constraint,
Zu(Ao,N) = P(Ay = Ao).
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The difference from the unconstrained setting can be quantified using the Kullback-Leibler diver-
gence or its opposite, also called the relative entropy of p, (X) with respect to (X ) or simply the
micro-canonical entropy :

pu(X)
h(X)

The presence of this o is a bit annoying; it is again related to the fact that we use continuous
variables in a physicist way... At the same time it guarantees the entropy to be positive. We will omit
it in practice. One sees that the large deviation principle satisfied by Ay guarantees that S, (Ao, N)
is extensive.

Su(Ao,N) = —D [pul|h] = /pr,l (X;A0)In — co—InZy (Ag,N) = eo—NIp(ap) (5.20)

The probability density of a configuration x of the part is again obtained by averaging out the
external degrees of freedom :

pu(0) = [ TT dxi pu(Xso) = t/ dx; h(X)8(Ay(X) - Ao) (5.21)
zI;[rl Zy AO’N zlrll
Under the same two hypothesis as before

h(x)Zy (Ao —A,,N —n)
ZIJ (A()’N)

pulx) = /Hw,mﬂ)mwwmrmh (522)

Zu(AOvN) i=n+1

While Ay is fixed, A, can still take all values compatible with the constraint A, +Ay_, = Ag. Hence
the probability of observing A in the part of interest P, (A, = A) is given by :

Pu(A, = A) = / de,- Pu(x) 8(An(X) — A) (5.23)
i=1
_ Zu(Ao—
== Ao, / de, An(X)—A) (5.24)
Zu(Aﬂ)Zu(Ao—A,N— n)
_ 5.25
Zu(Ao,N) 02

in other words, taking the logarithm
InP, (A, =A)=Su(A,n)+Su(Ag—A,N—n) — Sy (Ao,N). (5.26)

These two forms of the same formula are remarkable in the sense that the statistical properties of
A, under the constraint that Ay = Ag are given by the product, or the sum, of the same function
Zy, or Sy, taken with different arguments, where Z, (A, N) is simply the probability of A in the
unconstrained system. 7, is called the micro-canonical partition function.

Remember that obtaining this remarkable result required three essential properties, the additivity
of the macroscopic observable of interest, the independence of A, from the degrees of freedom
outside the partition where it is measured and the factorizability of h(X).
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By definition P, (A, = A) and InP, (A, = A) are maximal for A, = A*, the most probable value.
dInP, (A,=A)

Accordingly A =0and
3Syu(A,n) 9Su(Ag—A,N —n) A*
= =—-{(a"=—). 5.27
oA la TAo—A)  p= =) (5:27)

£, note the minus sign, is called the thermodynamic parameter associated to the constrained quantity
A. S and A being extensive quantities, § is an intensive parameter. The function {(a) is an essential
characteristic of the system. What is remarkable here is that {(a*) is equal in both parts of the
system.

Two systems in contact

One can easily generalize the above approach to the more interesting case of two different systems,
which share and exchange a common additive macroscopic quantity, the total amount of which is
fixed. The paradigmatic example of such a situation is the case of two different physical systems in
contact exchanging energy between each other, while being isolated from the rest of the world.

The two systems (1) and (2) respectively take configurations x = {x; =1}, and y = {yij=n+1, N }.
with probability densities /4 (x) and Ay (y).

The probability of a configuration (x,y) of the whole, under the constraint Ay (x,y) = A,(x) +
An—_n(y) = Ap is thus

Pu (x,y;Ao) = Z,.L(Al()]\])hl (x)hz(y)5 (A,,(x) —l—AN_,,(y) —A()) , with (5.28)
Z,(Ao,N) = /dXdyhl (x)h2(y) 8 (A (x) +An—n(y) — Ao)- (5.29)

The probability density of a configuration x of system (1) is again obtained by averaging out the
external degrees of freedom, here those of system (2) :

p/.(tl)(x) :/dypu(X,y;Ao) = Z“(Alo,N)/dy hi(x)h2(y)8 (An(x) +An—_n(y) —Ao) (5.30)

(1) ) _ h(l)(x)Zflz)(Ao —An,N—n)

X (5.31)
Pu ( Zﬂ (A07N)
The probability of observing A in system (1), P, (A, = A) is given by :
Pu(A, = A) = / [T ot (x) 5(4n(X) - 4) (5.32)
i=1
Reproducing the same argument as above, one obtains
Z0 A2 (Ao — AN —n)
Pu(A,=A) ="~ = with (5.33)
ZIJ (A()?N)
o Z"An) = / dxhy (X)8(An(X) — A), (5.34)

o ZP(Ag—AN—n)= /dyh2(Y)5(Aan(Y) — (40— A4)). (535
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and, equivalently,
InPy (A, =A) = S (A,n) + ST (Ag — A, N — ) — S (Ao, N). (5.36)

Note that in this case, there are three different micro-canonical partition functions, the one of each
system and that for the union of the two systems.
Again InlP;; (A, = A) is maximal in the more probable macroscopic state (A = A*), and

s Ay ASP(Ag—A,N —n)
0A  lar d(Ag—A) e

or Ci(AY) = G(Ag—A¥) = ¢ (5.37)

Each system has its own function §(A). When put into contact, they share the macroscopic quantity
A under the condition that the total amount Ag is fixed. In the most probable macroscopic state, the
two functions {; and {;, evaluated respectively at the equilibrium values A* and Ag — A* take the
same value {*.

Proposition 5.4.1 — Equilibrium Stability and Fluxes back to Equilibrium. Suppose, two sys-
tems in contact (1) and (2) that are not in the most probable macroscopic state. By this we mean that
the values of the macroscopic variables A’s in each system are different from their most probable
values A*’s and that their associated intensive thermodynamic parameters {4’s are not equal in the
two subsystems.

This situation can obviously not last for long and Py (A, = A) will rapidly grow back to its
maximum ; hence

dinP, (4, =A) (38 (A,n)  aST (Ag—A,n) dA JA
#Ezt : ( ugi; - B(ZOO_A)) o =—(G=6) >0 (538

dt
As soon as the intensive thermodynamic parameter { is not equal in the two systems in contact,

there is a restoring flux of the corresponding constrained quantity A from the system with the largest
¢ to the one with the lowest one.

2 _
The equilibrium should also be stable. This can be expressed by the fact that %w < 0.

More intuitively, since the path towards equilibrium consists in flowing the macroscopic quantity A
from the largest {4 to the lowest one; it is necessary for this equilibrium to be stable that this same
flow reduces the difference between the values of the 4’s. This implies

9Ga
5 20 (5.39)

The canonical setting

The canonical setting consist in considering the case where the system of interest (1) is small as
compared to system (2), the so-called reservoir of A; (1 < n < N).

Figure (5.3) illustrates the use of equation (5.36), in the case 1 < n < N, using the example (5.1) of
N independent spins and their total magnetization, for which we had an explicit expression for S;.

The general features presented in this figure rely on the scaling in N of §;; and are therefore

quite general. In particular, when computing InP, (A, n), only the part of SLZ) (Ag—A,N —n), close

to the place where SS) (A,n) is maximum, matters. Because n < N, SLZ) (Ap —A,N —n), on this

interval, can legitimately be approximated by a straight line. Since we are interested in the statistical
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FIGURE 5.3 — Illustration of the computation of P(M,, = M) in the case of the N independent spins.
(a) : S\ (M, n) in blue, S (Mo — M, N — n) in red and S, (Mo, N) in black; (b) S’ (M, n) + nln(2)
in blue, SLZ) (My—M,N —n)+ (N —n)In(2) in red and S, (My,N) + NIn(2) in black; (c) same
zooming on the domain of validity of S,(ll) (M,n), together with, in purple, the sum of the blue and
red curves; (d) finally In[P, (M, = M), obtained from subtracting the black curve, from the purple
one. (The In(2) terms have been added for the clarity of the figures, but cancel altogether and are
thus inessentials).

properties of A,, it is natural to approximate S&z) (Ao —A,N —n), close to the most probable value

A* of A,,, where

ISP (Ag—A,N —n) 54 (A,n) o
9A e TR P (540

so that the linearization of Sf) (Ao —A,N —n) reads
S (Ao —AN —n) = ST (Ag— A", N —n) + {*(A—A"). (5.41)

After exponentiating to obtain VAS) (Ap —A,N —n), and substituting in equations (5.31) and (5.36),
one obtains the expressions for pfl) (x) and P.(A,n) :

W pey MO rap
e (58) = et AN, (5.42)
(1)
Z (A,n) * 1 * (1) 1 n(g*ﬂil(l)(a))
P.(A,n) = H eCA — eC A+87(An) e n 10 , (5.43)
An=Zem® =z 7T
with
st (A,n) 18" (a)

=] = 44

¢ A |, da |, (544
and

ZC(C*,n):/dxhl(x)eg*A:/a’AZS)(A,n)eC*A:/dAeC*A*"IéI)(“), (5.45)

The normalization constant Z.({*,n) absorbs all the terms independent from A. The index ¢
replaces the index tt, when performing the linear approximation, to denote the canonical situation
and underline the fact that the system of interest is small with respect to the reservoir. Z.((,n) is
called the canonical partition function.

What is remarkable here is that the statistical properties of the system of interest in contact with the
reservoir depend only on SL (A,n) and *. As aresult A, obeys a large deviation principle :

P.(A,n) =) with I.(a) =I"(a) - {*a. (5.46)
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Furthermore, in the canonical situation, A* < Ag and the equality of the thermodynamic parameters
between two systems in contact §;(A*) = §(Ag — A*) can be approximated by &;(A*) = §(Ap).
As a result, imposing the global constraint A, + Ay_, = Ag becomes equivalent to imposing
&* = & (Ap). From this point of view, equation (5.44) can be seen as an implicit expression to be
solved in order to obtain A*.

Physical interpretation : When the system is free of constraint, the macroscopic quantity A
fluctuates according to the distribution P(A, 1) = ¢~"0(@)_In contact with a reservoir, with parameter
¢, it now fluctuates with probability P(A,n) = ¢ "0(4)=84) The reservoir biases the statistics. In
particular the most probable value does not take place at the maximum of /p, anymore, but at the
maximum of Iy(a) — {a, namely where the slope of Iy(a) is C.

p) Repeating many "experiments", in which different values of {* are imposed and the A*’s
are measured, one would obtain a curve A*({*) or equivalently {*(A*). Integrating equa-
tion (5.44), one would then determine SLI)(A,n) up to an additive constant, and thereby
statistically characterize the system of interest.

Finally, in a way similar to the way we introduced the micro-canonical entropy as the relative
entropy of the micro-canonical distribution with respect to i(x), we can introduce the canonical
entropy as the relative entropy of the canonical distribution with respect to A(x) :

Se(&*,n) = —DIp.||h] = /dxpc ((x():) =InZ.(&",N)+ " (A)(¢+)- (5.47)
Proposition 5.5.1 — w({,n) = 1 1nZ.({,n) is the Legendre-Fenchel transform of Iy(a) = —S“T(A).
This is a straightforward application of the Laplace approximation :

Z.(¢ /dAZ“ (A,n) /dAe (Calo(@)) 5 (&) (5.48)

with:  w({) =sup(fa—1Iy(a)) =Ca" —Ih(a"), (5.49)
a

Summary and Discussion

The following table summarizes the results obtained in the previous sections, concerning the
statistics of a partition. Pay attention to the fact that X denotes the configuration of the whole system
and x that of the part of interest.

‘ ‘ Prior ‘ Micro-canonical setting ‘ Canonical setting

R(X)S(A(X)-A .
‘ p(X) ‘ ‘ pu(X ) = HXPUX) 4] >Zu((A(0 13,) o) ‘ irrelevant

Zu(Ag—A(x),N—n dInZ,(An
pW | ) | pul = MBI | pd) = et = -

ot Zu(A,n)Zy (Ag—A,N—n) Zu( 1 n(Ca— — 1 —nl(a

‘ P(A;n) ‘ ne ‘ ZaChoN) ‘ Zf eCA Z(Cn® (amhi@) = zn® "
‘ 4 ‘ Zy= ‘ Zu(A,n) =Py(A,n) = e oA/m) ‘ Z(g,n) ~ ™)

TABLE 5.1 — Summary : together with S, =InZ,; { = —% and w(&) = sup, (§a—Ih(a))
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Proposition 5.6.1 — Proposition.

w({) is the scaled cumulant generating function of % for the unconstrained statistics.
Indeed w({,n) = 11nZ.(¢,n) and

/dxh )eCAW /dAzﬂ (A,n) /dAIPO (A,n)e = ("50); (5.50)

Proposition 5.6.2 — Consequence |. As such it can be used to compute the cumulants of A :

dInZ.(§,n)
(A)o = o ‘c:o (5.51)
9%InZ.(¢, (A
(A%)o—(A)g = 711& Cgc n) ‘C:O - é 20 . (5.52)
B ¥InZ.(¢,n)
ak = T‘czo' (5.53)

Proposition 5.6.3 — Consequence Il. By application of the Girtner-Ellis theorem, If w({) =
LInZ.(¢,n) is differentiable, then I(a) is the Legendre transform of w({).

Warning : One can also use w({) to compute the cumulants of A, in the canonical statistics. Indeed,
it is straightforward to see that

_ dInZ(L,n)
e =50, (5.54)
2 n n
A2 - a2 =2 jgéc )} - af;‘gc ; (5.55)
k n n
Kak = 81822(5,)‘ : (5.56)

However w({) is not the cumulant generating function of A in the canonical statistics ! Other wise by
application of the Girtner Ellis theorem, it would be the Legendre transform of I.(a) = Ip(a) — {a,
and not that of Iy(a)...

The two following propositions aim at discussing what is the statistical difference, between an
isolated system of N degrees of freedom X = {x; ;—,_n} under the constrained Ay(X) = A and the
same system in contact with a reservoir of A, at a given parameter {. As you can see, we now ignore
the degrees of freedom of the reservoir, the effect of which is fully encoded in the value of ¢.

Proposition 5.6.4 — Interpretation of the canonical distribution.
For the isolated system, one has

h(X)

ZuAN) S(A(X)—A). (5.57)

Pu(X;A) =

For the system in contact with the reservoir, one has

) sa _ [ X
Zc

pe(X;0) “6( A(X) —A). (5.58)




42 Chapitre 5. Important Concepts

Hence

/ dAZ“ S (X:A) / dAPL(A,n)py(X:A). (5.59)

In other words, the canonical distribution, for a given value of {, is the superposition of the
micro-canonical distributions for all possible values of A, weighted by the canonical weight of A
prescribed by the value of §.

Proposition 5.6.5 — Ensemble equivalence. Since P.(A,n) obeys a large deviation principle,
it becomes more and more peaked around its most probable value A*, when n increases. In the
thermodynamic limit, n — e, P.(A,n) — 6 (A — A*). In this limit :

Pe(X;8) ~ pu(X;A = A%()). (5.60)

The two statistics are equivalent.

Proposition 5.6.6 — Distribution of an observable O.
For the isolated system, one has

P, (0:A) = z:(fx) / dXh(X)8 (0(X) — 0) S(A(X) — A). (5.61)

For the system in contact with the reservoir, one has, using now familiar algebra

1
P, / dXh(X 0)SAX) (5.62)
0=z =0
1
-5 /dA/dXh (X) = 0) A S (A(X) —A) (5.63)
=7 ;C /dA egA/dXh (X)—0)8(A(X)—A) (5.64)
1
70 / dA P, (0;A)Zy(A)e (5.65)
1 / N(§a—Io(a))
= dalP,(0;A)e 0@, (5.66)
7€) ] 4 FulON)
In the large N limit, using the Laplace approximation, one obtains (see equation 5.49)
P.(0:0) ~ Z_;C)P“(O;A*(g))ww@) P, (0;4°(0)), (5.67)
where { satisfies { = as“a(ﬁw .

In other words, given an isolated system under the constrained Ay(X) = A, in the large N limit, if
one puts it in contact with a reservoir with the value of {, which ensures that the most probable
value A* = A, then all observables have the same distribution in both configurations.

Proposition 5.6.7 — Generalization to two — or more - constraints. The above description can
easily be generalized to an arbitrary number of constraints, as we shall now see in the case of two.
The system of N degrees of freedom with configurations X = {x; ;—. n } satisfies two independent
constraints A(X) = Ag and B(X) = By. One thus have

h(X)

~ A D A - — i —NIO ap,bo)
ZH(A(),B(),N) S(A(X) AO)S(B(X) BO)7 with ZH(A07307N) (5.68)

pu(X) =
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Following the above prescription, one defines {4 = % and obtains

. h(x)eCAA(x)
Pe(x) = m&ﬂ@ —By) (5.69)
_ZuABN) ca 1 NGadad)
A= BN T G BN) (370
1
w(&a,b) = NlogZ?(CA,B,N) = Lua* (8, b) — Iy(a*,b) (5.71)

Of course the same can be done, replacing A with B.

The next step is to reproduce the same scheme for B, replacing A(x) by h(x)e%4™) and Z, (Ao, By, N)
by Z.(£4,B,N). To do so we introduce

915 ({a,b)

A (5.72)

1
Ig(CA7b):_NlogZ?<CA7BaN)7 and Cf?:

The apparent asymmetry between A and B is only apparent, as it should be, since the order in which
the two constraints are considered should not matter :

B __ alg(CA7b) 8[10(0*7b)_CAa*(CA7b)]

e TR b (5.73)
_da*dly | Iy a*
= ab%—F%—CA% (5.74)
Iy
== (5.75)
=Cp (5.76)

where it has been taken care to derive with respect to all the relevant arguments in the composite
functions. One then obtains nice symmetric forms, for this new setting

_ hx) LA+ sB(x)
Pecl¥) = 7 E G) G717
Z,(A,B,N) 1 _
P.(A,B) = -~ CaA+CBB N(Saa+Epb—Io(a,b)) 5.78
AB) = 2t} 2 G G 6-78)
1
w(Ca, ) = NIOgZCC(CAv Cp,N) = Caa™(8a, 8p) + Cpb* (8a, ) — Io(a™,b) (5.79)

Nota Bene : P is a joint distribution for the variables A and B. One often is interested in the
marginal, say for the variable B only :

PeolB) = [dxpec()8(B(x) = B) = [ dxzwéjf’zmew<x>+¢83<x>a<3<x> _B) (5.0

_ ;eCBB hix eCAA(X) ¥) =
_ 4GB
ZCC(CA,CB7N)

1 N(Esb-tw(lasb))
S S— , 5.83
ZCC(CAaCB>N) ( )

(5.82)
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6.1

Equilibrium Ensembles

Equilibrium holds when a system obeying Hamiltonian dynamics has reached a steady state, and is
not submitted to any external driving. This is of course a rather restrictive view, and you shall see in
the last part of this course that there exist other dynamics, in particular stochastic dynamics, which
can be considered as equilibrium dynamics. One can see these stochastic dynamics as effective
dynamics, the law of which have been chosen, to ensure equilibrium properties.

Those equilibrium properties are :

— the uniformity of the measure on the manifolds of the conserved quantities
— some form of temporal reversibility

For the moment let’s focus on the case of Hamiltonian dynamics. We have seen in section (2.6)
that the steady state measure for Hamiltonian dynamics is uniform over the manifolds where the
system is ascribed to evolve by the conservation laws. The translational invariance in time and
space, together with the rotational invariance, imposes three conservation laws, that of the energy
Ep, the momentum Py and the kinetic momentum Ky, the last two being d-dimensional vectors.
Furthermore, there will be situations where the volume and the number of particles shall also be
fixed or let to fluctuate in contact with a reservoir.

From what we have learnt in the previous chapters, (see table 7.1), we immediately infer the so-
called micro-canonical measure, which describes the situation of an isolated system of Ny units or
particles with configurations X = {¢;, p;} in a container of volume Vj. The measure being uniform,
h(x) =1, one simply has

1
Eo,Vo,No,Po,Ko)

0(H(qi, pi) —Eo)8(V(qi, pi) —Vo)8(N(qi, pi) — No)...

.6(P(qi, pi) —Po)6(K(qi, pi) — Ko).

pu{gi,pi}) = o
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where

Q(Eo, Vo, NoPo,Ko) = /quz'dpi(S(H(qz‘,Pi) —E0)8(V(qi,pi) —Vo)6(N(qi, pi) — No)...
-..6(P(gi, pi) —Po) 6 (K(gi, pi) — Ko)

is the volume in phase space of all the configurations of Ny particles with energy Ep, volume Vj,
momentum Py and kinetic momentum K. Q is nothing but the micro-canonical partition function
Zy, in the case of a uniform measure.

We have here three scalar and two vectorial constraints ; without thinking further we thus define as
many thermodynamics parameters :

Définition 6.1.1 — Thermodynamic parameters.

CEE_alogQ(Ea,]\E/,N,P,K) :_325_ :_% 6.1
Cvz_alogQ(Ea,‘x//,N,P,K) :_;955_[31) 62)
[ = _810gQ(Ea,I\V/,N,P,K) _ _aasz By 6.3)
o= _alogQ(Eég,N,P, K) _ _3}5) 6.4)
fo= _810gQ(11;;I‘</,N,P, K) _ _;9; ©6.5)

where we have used that § = logQ, a direct consequence of the uniformity of the measure, and
where the last part of the equalities actually provide a statistical definition of the commonly used
thermodynamic parameters.

It is important to remark, that, at this stage of the theory, the physical meaning of the intensive
thermodynamic parameter {’s,remains unclear. You may have recognized 3, because of your
scientific culture, but nothing actually tells you that it is the inverse of our everyday life temperature.
In the following, we shall see that 7" and P are indeed the familiar temperature and pressure defined
at the thermodynamic and mechanical level. Regarding the last two equalities, which define less
familiar vectorial thermodynamic parameter, the reader is invited to read the complement (II.E)
of [Diu]. Let us just say that {p is the velocity of the center of mass and (k is the solid body
rotational velocity. For the purpose of simplicity, let’s assume that our system of interest is attached
in our lab, which can be seen as a reservoir of momenta, both translational and rotational, with

Cp=Ck=0.

In this simplified framework we can forget about the constraints other than the conserved energy, the
volume and the total number of particles. Note however that there can be several species of particles,
hence as many constraints, and as many corresponding chemical potentials u;’s. Disposing of
several constraints, one can define many different settings, deciding which quantities are fixed, and
which are free to fluctuate around an average value fixed by the contact with a reservoir with a
given thermodynamic parameter.

The most commonly used settings are

— the micro-canonical setting : E,V, N fixed
— the canonical setting : B,V, N fixed
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— the grand-canonical setting : 3,V, u fixed
— the PT or Gibbs setting : B, P,N fixed

From proposition (5.6.7) and definitions (6.1.1), one obtains all distributions of interest.

Canonical setting : A — E, (g = —é, Iy= —%anu = —%S(E,V,N)

1

pe(X;B,V,N) = me*’”’("), (6.6)

P(E:BV.N) = 75 ﬁIV e, (6.7)

W, = logZ. = S(E*,V,N) — BE*(B,V,N) = —BF(B,V,N), (6.8)
__dInZ(B,V,N), 2y 9*InZ.  9(E),

(E) = BT (6E7) = FTERT (6.9)

where F(B,V,N) = E*(B,V,N) —TS(E*,V,N) is the familiar free energy in the thermodynamic
limit.

PT, or Gibbs setting: A - E,B—>V, {g = —%, {y =—BP,Iy=—+1InZ, = —+S(E,V,N)

Ppi(X: B, P.N) = Z.(B.PN) [;’ P N)e—ﬁ”<x>—ﬁpv(x>, (6.10)
BB VB BN) = g ﬁ{ e R (6.11)
Wy =logZ, = S(E*,V*,N)— BE*(B,P,N)+ BPV*(B,P,N) = —BG(B,P,N), (6.12)
(6= - S0Z BN sy O OB (6.13)
(V) = —W; (8V?) = a;g’PZ;” — —322; (6.14)

where G(3,P,N) = E*(B,P,N) —TS(E*,V*,N)+ PV*(B,P,N) is the Gibbs free energy.
Grand Canonical setting: A - E,B— N, (g = —é, In=Bu, Ih= —%anu = —%S(E,V,N)

1
c(XsB Vi) = e PHETPUN) 6.15
pg ( B nu') ch(B’V’u)e ( )
Pe(E,N;B,V, 1) = meS(E’V’N)_BE+B“N, (6.16)
gc\Py V>
WgC:longC:S(E*’N*)_BE*(ﬁ7V7“)+ﬁuN*(ﬁ’V’“)E_Bj(ﬁvvvu)a (617)
~ 9InZy(B,V.u) 2 9°InZ,  J(E)
E)=———0p 1+ OF)="pm =—"55" (6.18)
dInZ,.(B,V,u) 5. 0*InZ,.  J(N)
Ny = —28" 07 (§N?) = £ = ; 6.19
W) IBu (ON") Jpu?  JIpu (©19)

where J(B,V,u) = E*(B,V,u) —TS(E*,V,N*) — uN*(B,V, i) is the so called "Grand-potential"

Nota Bene : In the Grand-Canonical setting, since the number of particles is not fixed, the sum
over all configurations must include a sum over all the possible number of particles inside the
configuration. Hence

Zee(B,V, 1) = i PENZ.(B,V,N). (6.20)
N=0
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Warning!!! The expression P (E) ~ ¢ B(E-TS(E)) suggests some easy identification between the

argument of the exponential and F () = E* — T'S(E*). The two should however not be confused.
F(B), the free energy, is a number set by the reservoir, which also sets £*(f3), the most probable
value taken by the energy of the system in contact with this reservoir. P.(E; ) is a function of E,
which describes the probability for the energy to take the value E. Its maximum is realized for
E=FE".

Proposition 6.1.1 — Relating free energy and the large deviations of the energy.

It is note rare to hear someone calling E — T'S(E), the free energy and saying that the free energy is
the large deviation function of the energy... while the correct statement is the following translation
of proposition (5.6.1) :

If —B f(B) is differentiable, —s(e) is the Legendre transform of — f(f) and the large deviation
function of the energy is —s(e) + Be.

The proposition 5.4.1, we saw in the previous chapter, provides a first hint of the meaning of
the intensive thermodynamic parameters. In the case of A = E and (g, one expects from the
everyday experience that energy flows from high to low temperatures. The form {y = —f8 = —1/T
is compatible with such an observation ; but this is certainly not a formal identification. In the case
of A =V and {y, one expects the volume to flow from low to high mechanical pressure (so that
high pressure regions expand). Here also, this is compatible with {y = —B P, with P the mechanical
pressure, but this is again not a formal identification.

As a matter of fact the physical meaning of the intensive thermodynamic parameters will become
apparent by computing macroscopic relations, the so called equation of states, which were em-
pirically measured using quantities defined at the thermodynamic level, such as the pressure, the
volume, and the temperature. This is what we shall do now for ideal systems.

The ideal gas

The ideal gas is defined as a gas of point particles, with mass m, which do not interact amongst
each other.

Let’s first compute the properties of the ideal gas in the micro-canonical setting.

2
The Hamiltonian of the ideal gas is H({g;, pi}) = LN, 2. = ¥V, % Since the total energy E is

fixed, this formula is nothing but the equation of a sphere of radius v/2mE in a space of dimension
D = 3N. Using the formula .25 (R) = %RD ~! for the surface of a sphere of radius R in
dimension D, where I'(x) = [;° du e ™, we find :

ANTN2 YN \omE !
ISR

1
QUEVN) = o [ TTdaidpid (Hai.p) ~ E) (621)

where the N,—}llw comes from the fact that dgq;d p; must satisfy the uncertainty principle and the fact
that any permutation of the particles lead to the same configuration. In the limit of large N, one
finds

3N 5
S(E.V.N) =10gQ(E,V.N) = —-InE + NInV — “NInN (6.22)

1 3 FE 1%
S(e,V):NS(E,V,N):EIHN—FIHN. (623)
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From this we extract the intensive thermodynamic parameter

JdS(E,V,N) 3N
=1 =" 6.24
P=""%0 ~= (624
Note that in the micro-canonical setting used in this calculation, we have fixed £ and computed 7.
First this is not the standard physical situation ; second this required the knowledge of the surface

of a sphere in D dimension. ..

N P

Let’s reproduce the above calculation in the canonical setting. Again H({g;, p;}) = ¥;_; 5= and :
P.({gi,pi}) = Me““‘ﬁ"""” (6.25)
Z.(B.N.V) = @/Iﬁdq,-dpie“fﬁ’fi - (/_deeﬁfi)w - (%% ’

- (6.26)
Z.(B,N.V) = — (; >N (6.27)
where the last equality of the second line results from a simple gaussian integration. Ay = f;—fi

is the de Broglie thermal wavelength. Never forget that it is a function of temperature. From this
simple relation, we derive :

dlnZ.(B,N,V) 3N 3
(E) = —ng;) =25 ONT (6.28)
dlnZ.(B,N.V) N
Cv=ng€,)=v (6.29)
on= ‘mzc(gﬁ,’N’V) =InA’p. (6.30)

The first equation is equivalent to equation (6.24); in application of the ensemble equivalence.
These equations by identification with the equipartition theorem and the perfect gas law suggests

that f = 7 L and §y = BP.

Since —Bf(B,v=1y)= %anc(ﬁ,v) =Inv—3In 5 ﬁ is differentiable, one can recover the expres-

sion of s(e), via the Legendre transform s(e) = — supﬁ (—Be+Bf(B)) (exercise).

The probability density of the energy is given by IP’C(% =e)= ﬁefﬁe“(e) and is displayed on
figure

Now let’s see how to compute the density fluctuations. Since the density n = N/V, one could study
its fluctuations by studying a fixed number of particles and let the volume fluctuate, or a fixed
volume within which the number of particles is free to fluctuate. Defining the volume of a fixed
number of particles is actually not an easy task and the second strategy is the good one. We thus
use the grand-canonical setting :

= (V/AS ePH
Zee(B,V, 1) Z PNz (B VN =Y /—e) = exp (/{2%“) 6.31)
N=0 T
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FIGURE 6.1 — Large deviation function and probability density of the energy of an ideal gaz (N=5)
for B =1[0.2,1,2], (blue,purple,brown).

We then know that the joint-probability of é = % and n = N/V is given by

Poe(E,N;B,V, 1) = ch([;me“EV’N)ﬁE*B“N : (6.32)
_ ch(ﬁ17 V7u)ev(§(av,n)—ﬁé+ﬁun); (6.33)

while the marginal probability of n is given by
Py (N; B,V 1) = ch(ﬁlwewavNW“N , (6.34)
Poc(N: BV, 1) = ch([;mevmw VnytBain); (6.35)

where W, (B,V,N) =1InZ.(8,V,N). We see here that the extensive quantity used to scale the large
deviation function is now the volume and not the number of particles.

The final step consists in using the Gartner-Ellis theorem :

_5(57’1) = S;p(_ﬁé_wc‘(ﬁ7n)) ) (6.36)
() = sup (B (B ) 637)
i

with Wee = %angc. You will for instance obtain that §(é,n) = %nlne~ — %nlnn, which is indeed the

result obtained trough the micro-canonical distribution s(e,v) = % Ine+Inv, if you remember that
v=1/n,é=ne and § = ns...

Independent spins in a field

The second example of an ideal systems consists in N spins s; = =1 in a field 4. The hamiltonian
of the system reads H({s;}) = —hYN s;.

We start by considering the micro-canonical setting. Knowing the number of spins up, N, and
down, N, is enough to compute the energy of the system :

E=—h(N" —N")=—h(2NT —N). (6.38)
The number of configurations with energy FE is thus simply the combinatorial result :
N! N!
QE)=Q(N")= = (6.39)

CNTIN-ND) T (AN=-E) (v B
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B N-E N-E N+£& N+E£
S(E)—an(E)_NlnN—< > >ln< > )—( 3 In 3 (6.40)

This is of course the same kind of result has the one obtained for the magnetization of a system of
independent spins, because the energy is nothing but £ = —hM. We then obtain :

and

_IS(E,N) _ 1 N-£

=— 6.41
P="—3E ~a"N+t 4D
Again note that the energy is fixed and we have computed f3(E).
Moving to the canonical setting, we have :
1
P.({s)) = —BH({si}) 6.42
C({sl}) Zc(BaN)e ( )
Z:(B,N) = Z oBhEisi _ Z He,Bhs; _ H Z oPhsi — H (eﬁh +e—ﬁh) — (2cosh Bh)Y
{si} {si} i si==%1 i
(6.43)
from which we derive
dInZ.(B,N
(E) = _n(;gi) — _NhtanhBh (6.44)
dInZ:(B,N) (E)
M)=———->—==—Ntanhffh = —— 6.45
Note that, without knowing that atanhx = %ln %’ the equivalence of the two settings does not
jump out immediately.
We also have the whole distribution of the energy and the magnetization :
1
P.(E) = e N(Be—s(e)) (6.46)
AT N
1
Pe(M) = ——~—— e~ N(BAm=s(m) (6.47)
NPT Ay

with s(e) = & InQ(E,N), where Q(E) results from the above combinatorial calculation. Alterna-
tively, since f(f) is differentiable —s(e) is also given by the Legendre transform of —f(B) =
ﬁanc(B,N ), which is exactly the calculation conducted in equations (5.7),(5.8),(5.9).

One sees that the computation in the canonical ensemble is usually more direct, and generally
allows to recover the expression of s(e), hence of the large deviation function of E, via the Legendre
transform of —f f(B). Of course the ideal systems here characterize themselves by the absence
of interactions amongst their components. We are thus in the situation where the Gértner-Ellis
theorem, turns into the simpler Cramers one, for which the cumulant generating function factorizes.
This is actually why, it is so easy to compute the canonical partition function. Life will not remain
as simple in the presence of interactions...






7.1

Elements of Liquid state Theory

Liquid state theory is a whole big chapter of statistical physics, and by no way we can cover it in
this course. We shall however give some basic ideas and introduce the logic behind it to illustrate
the importance of correlations, when the units composing the system of interest, here the particles,
interact amongst each other.

We first consider any gas, namely a set of N particles {g;, p;} confined in a container of volume V,
which obey the Hamilton equations.. These particles interact amongst each other, hit the walls of
the container and generate a pressure P defined as the averaged force per unit surface exerted by
the particles on the container.

Proposition 7.1.1 — The Virial theorem. This theorem is of purely mechanical origin. Let’s
consider G = Zf]:l gi - pi- Using the Hamilton equations, one readily obtains :
iG N, 2
E:z{qrﬁJrz‘{;li:afmrzEc, (7.1)
i= i=
where E, is the kinetic energy of the system and the rather "bizarre" quantity ¥ = vaz 19" fiis
called the Virial, from the latin vis for force. Computing the temporal average of this equation, in
the limit of an infinitely long time window, and assuming that G is bounded, one has that :

G, . 1 [ ,dG
(=l [aigs =0 (7.2)
and thus
1 1 a ext 1 int
<Ec>z:—5<7/>z:—§<2qi-ﬁ b= 57" (7.3)

i=1
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where we have dissociated the forces acting on the particle i, which come from the outside and
those which come from the interactions among the particles.

In the case where the particles are confined in a container, the external forces, averaged over time,
are precisely the integral over the surface of the container of minus the pressure —P per surface
unit. Hence the external part of the Virial can be evaluated as :

<7/ext>t:—/Pq-dS:—P/ divgdg = —3PV. (7.4)
b 14
Finally one obtains a very simple Virial relation
3 1 int
(Ee) = 5PV = 5(7™),. (7.5)

As stated at the beginning, this relation is of purely mechanical origin and very general. It gains a
statistical physics aspect when calling the ergodic hypothesis : then the temporal average is replaced
by the statistical one.

The hamiltonian of a liquid composed of N monoatomic particles (a simple liquid) with positions
and impulsions {g;, p;} is

N p_z
Hlapih) = Y5, + Vi ai) (7.6)

and, as for the perfect gas, one supposes that the liquid is confined in a volume V. The partition
function then simply reads

1 _ -
7 = T /Hdpid(«he BH({4i.pi}) (1.7)
1 52 ~BViulac)
Z= NN /dpe 2m /quie A (7.8)
7 = 1 <V;)N1N/quie—ﬁ%m({qi}) (7.9)
N'\Ay) V ;
Z=716Zin (7.10)

Hence the partition function of a simple liquid factorizes into that of the ideal gas and a purely
configurational one, which encodes the interactions. The following table derives the main ther-
modynamic quantities of interest from this partial knowledge of Z, where we have separated the
kinetic contribution, the configurational part of the ideal gas and the configurational part coming
from the interactions

p) Itis amazing to note that the Kinetic contribution to BP(f3,V) is null. If you think about the
virial theorem, according to which the pressure is directly related to the average of the kinetic
energy, this is a bit puzzling... The reason is that the kinetic part is already fully encoded in
the factor 3, because the distribution of the p;’s is entirely encoded in it. Indeed ...

p) The canonical probability of a configuration also factorizes :

1 1 2\ N! /1
) — — o~ BH({4i.pi}) — -B5 —BVim({4i})
]Pc({qlvpz}) Ze (ABTe 2i ) VN (Zime ) (711)
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|
| BF(B)=—InZ(B,N,V) | 3NInA7*> | -NIn} =NInp |  —InZy(B,N,V)

Kinetic ‘ IG configurations ‘ Interaction configurations ‘

|
| pp = InZBNY) o | ¥=p | Iz Y] |
| (B) = —2RERND) T 0 [ mmpan

TABLE 7.1 — Thermodynamical properties of simple liquids ; the Boltzmann constant is set to one.

As a result the distribution of the velocities, called the Maxwellian distribution, is a Gaussian
distribution, the properties of which is entirely encoded in its second cumulant, proportional
to the temperature. It does not depend on the configuration. In practice this means that the
particles in a gas, a liquid — whatever its viscosity — or a cristal, coexisting at the same
temperature, move with the same velocity distributions...

The main task of liquid state theory is thus to compute Z;,;, or at minima, the equation of states
(EY(N,V,T)and P(N,V,T). Because of the interactions between the particles,Z;,, does not factorize
and it is in general not possible to obtain an exact solution. There is one famous case, where the
partition function of a gas with hard core repulsion can be computed exactly, the Tonks Gas, which
we shall solve below.

In all cases, a reasonable hypothesis is to consider that the interaction potential is pairwise and
additive (this is almost the definition of a "simple" liquid).

Vie ({gi}) = Y V(gi—q;) = Y. Vij (7.12)

i<j i<j

In this case

Zipp = VN/qul “BLiciVii = /qulne Bvij (7.13)

1<j

The Tonk gas is a one dimensional gas of infinitely hard particles of length 2a in a box of size
L. The potential (the Boltzmann weight) is infinite (resp. zero) if the particles overlap and zero
(resp. one) otherwise. In this situation, computing the configurational part of the partition function
amounts to count the number of configurations with no overlap :

1 Xy —2a x3—2a Xip1—2a L—a
Z,'m: W/ dxl/ de.../ dx,-.../ dXN (7.14)
L a x14+2a Xi—11+2a xy_1+2a

The trick is to make the change of variable X; = x; — 2ia, which leads to the very simple form :

1 X, X3 Xit1 L—a—2Na
Z,'m = f/ dX] dX2 / dX, dXN, (715)

N
—a X Xi1 XN-1

which correspond to that of a gaz of point particles in a box of length L — 2Na, and therefore is

N
Zint = (L_L2N“> =(1—¢)N =(1-2ap)". (7.16)
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We thus find using the results of table 7.1 :

_ _ E 2 P
BF(B) = ~InZ(B.N.V) = 3N InA} +N i E . (7.17)
dMZ(B.NV)  p
R (7.18)
(E) = —‘ng;’N’V) _ %NT. (7.19)

Note that the average energy of the system is that of the ideal gas; the reason is that the particles
being infinitely hard, there is no energy scale in the potential, hence Z;,, remains independent of the
temperature.

As stated above, there is usually no such nice change of variables and even the hard discs gas in
two dimensions does not have an exact solution. More generally, a typical shape of the interaction
potential between two particles separated by a distance r is provided on figure (7.1). There is a hard
core repulsion at short distance, an attractive part at intermediate distance, and it goes to zero for
large enough distances. As a result e 8" is a function that goes to 1 for large r, which is not very
nice for integration... It is thus a good idea to introduce the so-called Mayer function :

fij=e PV, (7.20)

also represented on figure (7.1). It takes finite value everywhere and goes to zero for large r. Writing
e PVi=1+f i, where the 1 corresponds to the ideal gas, one can see that the Mayer function is
the natural formulation to characterize the corrections to the ideal gas brought by the interactions.
Note that the Mayer function depends on the temperature. Introducing the Mayer functions in the

FIGURE 7.1 — Interaction potential (in red) and the Mayer function for a given 8 (in blue)

computation of Z;,;, one obtains an infinite sum of integrals to evaluate :

Zim = /Hd%H I+ fij) = /Hd‘b <1+qu Y fijflm+---> (7.21)

i i<j i<j i<jl<m

This infinite sum is called the cluster expansion. After some tedious calculation, it is possible to
show that this infinite sum recombines into an exponential

Ziw =V with &= Z f’fl (7.22)
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where the B;’s are the so called irreducible integrals :

Po=1, Pi= / Pri(F), b= / Pridrs 3 (7) f3(7) f5 (7 — 7). (7.23)

From the knowledge of Z;,;, we obtain that of the free energy BF(B,N,V) = BF;c—N®(B,p) and
that of the pressure, the the so called virial expansion — which is not to be confused with the virial
theorem.

Br=p (1- 381810~ 3pa(B)p*+ . (.20

The above method offers a clear separation between the effects of temperature and that of density.
However, it is unfortunately extremely painful to implement in practice. The functions f; often
have to be evaluated numerically at each temperature of interest. Furthermore the convergence of
the expansion can be very slow.

One can still use it to find the Van der Waals equation, using the following trick. For a potential with

. . . . 6
a short distance repulsion for r < a and long distance Van der Waals attraction V;,;(r) = —Vj (%)
for r > a, one can evaluate the first virial coefficient :

4
Bi =v(—1+BVy), with v:gmﬁ (7.25)

and the pressure at first order reads

v
pP=p (1+3(1-Bv)p) (1:26)
The trick consists in assuming that 1 4 % is the beginning of the development of (1 — %) “in the

limit of low densities vp < 1. One then indeed recovers the Van der Waals equation

2
(PJrVovg) (V —N%) — NkyT (7.27)

The difficulties encountered above happens because the interactions generate coupling amongst the
positions of the particles, hence correlations in the structure of the liquid. These correlations are
fully encoded into the configurational probability distribution

1 _ :
P({Qizl,...N}) = <Z.te_BVW({q[})> , (7.28)

which contains too much information. The ideal is to say, let us limit ourselves to the two-body
correlations. Namely, one would like to consider the marginal distributions (see definition 4.2.3) :

NI
(N—

N!
(N—2)!

pW(g1) = 1)!P(Q1) :N/in:Z,...NP({Qi:L.‘.N}) (7.29)

pP(q1,42) = P(q1,92) =N(N—1) /in:3,...NP({Qi:1,...N}) (7.30)

which are respectively the probability that any particle is at position g, and the probability that any
two particles are at positions ¢g; and g.
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It is intuitively clear, and it is easily shown using the normalization [dg;—1 NP({gi=1.n~N}) =1,

that for an homogeneous system p(l)(ql) = % = p. In the absence of correlations the distribu-
tion p? factorizes, p@(g1,92) = p"(q1)pV(¢2) = p?, and one introduces the so-called pair

correlation function

g(r)=—5—, (7.31)

where the system has been assumed isotropic and translational invariant. It is the conditional
probability that a particle sits at the distance r from the origin, given that one particle sits at the
origin. It contains the first level, but already very rich description of the structure of a liquid and
can be measured very accurately using X-ray scattering (see figure (7.2).

1.6

1 a8
1.4 1 a0 | H

1.2 4 \
ze b [all
B 1 /__vgvﬁ._ -\:.
S 08 1 i
18
0.6
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0.4 Kk 1o =1.10
ke fo=6.14 ——
0.2 ke 1 =20.0 —— 1
0 crystal, kg ry =61.4
0 2 4 6 s 10 12 "% . .
ke r rA

FIGURE 7.2 — Pair correlation function : from left to right a sketch of the meaning of it, g(r)
in a model liquid in the gas,liquid and crystalline phase, g(r) measured in a liquid at different
temperature.

Proposition 7.1.2 — The potential of mean force. . We shall show that

p(2) (ql ) q2) _ efﬁw(ql q2)
2 )

8(q1,q2) = ) with - w(g1,92) = (V{gi}))qran fixea  (7.32)
Indeed
“ngla,a2) = - In [ dgis wP({aicr. ) (7.33)
2 - %1 - - '
dq 841,92 da, qi=3,.NF(19i=1,.N
fin:S,‘..N%P({Qi:I,...N} d
= o = B—(V{agi})@.atiea (7.34)
Jdgi=3, NP({gi=1,..n} dq
w(q1,q2) is called the potential of mean force, because — diq. (V({4i}))(1,4) fixed can be understood

as the mean force acting on particle 1, maintaining fixed particles 1 and 2.

Finally we shall see how, the pair correlation function can be used to compute (Ej,,) and Py, the
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contributions of the interactions to the energy and pressure.

9InZw(B,N,V)

(Eint) = 28 (7.35)
S / dgi—1,.nV ({gi})e PV {a}) (7.36)
Zim '
— [ dgic1.w ¥ V(i) PUgio,.) (737)
i<j
N(N—-1
= (2)/d%d%v({%,m})/dqz'—a,..NIP’({qi—l,“.N}) (7.38)
1
=5 / dg1dg:p® (q1.42)V ({q1,42}) (7.39)
2V oo
= pT/o dr47tr2g(r)V(r), (7.40)

where the last line results from isotropy and translational invariance.

IMZBNY) g

For the pressure, one can also start from the statistical physics definition P = 3V

would rediscover, as a first step, the Virial theorem, see proposition (7.1.1) :

BP

By
, —1+3N<;flqz>, (7.41)

where the equipartition (E.) = 3NT has also been used.

Then, using f; = — avgg?i}) =—Yij %L;, the symmetry of the action-reaction principle and the

translational invariance of the potential, one finds, following the exact same procedure as for the
energy :

<Zfi%‘> = ;<Z(Cli61j)a‘/(qi_qj)> (7.42)

i#] (g —q;)
2V ')
:_pT/o dramr’g(r)rV'(r) (7.43)
and
BP 2 [T eV
=1 B /0 drig(rV'(r) (7.44)

p ) For hard spheres V'(r — d) — . It is useful to replace g(r) by y(r)e~V") then integrate by

part, using d“;:m = &(r—d), and one finds %P =1-Zpd3g(d).

Altogether, we see that knowing the pair correlation of the liquid gives access to all the macroscopic
quantities of interest.

On the experimental side, we have seen that the pair correlation function can be measured using
X-ray scattering. On the theoretical side, the idea is to find a self consistent equation for it.
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The first step consists in the so called Ornstein-Zernike equation, introduced by Ornstein and
Zernike in 1914.

h(r12) = g(r12) — 1, the total correlation function, measures the "influence” of particle 1 on particle
2 at a distance ry;. The idea, see figure (7.3), is to split this influence into two contributions, a direct
and indirect part.

FIGURE 7.3 — Illustration of the Ornstein-Zernike decomposition of the influence of particle 1 on
particle 2, into a direct part and an indirect one

This indirect effect must be weighted by the density and averaged over all the possible positions of
particle 3 ; hence

h(r12) = C(rlz) —|—h(r12) = C(rlz) +p /dr3c(r13)h(r32), (7.45)

where ¢(r|2) is called the direct part of the correlation and &(r»), the indirect part.

This equation alone is of no use; it is almost a formal definition of ¢(r|;). Also what we are interested
in is h(ry7). Still it may guide the intuition to propose a closure relation, which relates ¢(r) to h(r).
This is precisely what was proposed by Percus and Yevick in 1958. The closure relation relies on
the use of the potential of mean force to gain some intuition. Since h(r) = g(r) — 1 = e B*(") 1,
suppose that the complement to the direct part is obtained by subtracting to the potential of mean
force, the pair interaction potential V (r) : a(r) = e P()=V(1)) _1_This immediately provides a
relation between c(r) and h(r), which closes the Ornstein-Zernike equation :

e(r) = (h(r) +1) (1 =) (7.46)

The resolution of the resulting integral equation remains a complicated exercise. It happens that for
hard spheres, there is an analytical solution proposed by Wertheim in 1963. Today the most used
closure relation is the Hypernetted chain approximation, which is an extension of the Percus-Yevick
approximation.



7.2

7.2.1

7.2 Spins in interactions 63

Spins in interactions

Models of spins are used to describe magnetic materials.. Essentially it consists in fixing the
magnetic moments onto the underlying cristalline lattice of the material and let them interact
at more or less short distance. The dimension and shape of the lattice may vary, the interaction
amongst the magnetic moments favor alignment or anti-alignment, and the spins can take discrete
or continuous values. The best know of these models, and the first one was introduced by Ernst
Ising, during his PhD, in 1924. In this case the spins take values s; = £1 and the interactions favor
alignment. The Hamiltonian of a system of N spins in a field reads :

H({si}) = —JZ Zssj—th, (7.47)
1 JV
where }' ;) is the sum over the first neighbors spins of s;.

By contrast with the case of independent spins, the knowledge of the number of spins up and down,
does not allow to compute the energy. The details of the configurations matter. It is thus in general
impossible to evaluate Q(E,N) via combinatorial approaches. Regarding the canonical setting, the
partition function does not factorize and is thus not easier to evaluate.

In some rare cases, there are exact solutions to the problem. This is the case for the 1d chain of
ising spins, which we shall solve below. It is also the case for the 2d square lattice, but the solution
is a real tour de force accomplished by Onsager in 1944, and we shall not expose its derivation here.

The 1D chain of Ising spins

The energy of the one-dimensional Ising model on a lattice of NV sites is

H({s;})=—J Z SiSitl — thl (7.48)

If A =0, it is very easy to obtain the free energy in the case of free boundary condition, i.e. when
= +1 and sy = *1. Then the model factorizes under the change of variables s, = s;s;-1 for
J > 2 and the partition function can easily be evaluated :

Z.(B,h=0,N) = Z Heﬁh, it — Z 2Heﬁjs’_2HZeﬁJs’_ [eﬁ1+e_ﬁJ}N1

Sii=1..N = /ZNJ_ ]25

(7.49)

where the factor two comes from the fact that two configurations of s;s;+; lead to the same
configuration s and the dimensionless free energy per spin reads :

Bf(B,h=0)=—1In [eﬁf +e*ﬁf} — —In(2coshBJ). (7.50)

If h # 0, we need the transfer matrix method. For the periodic boundary conditions case, i.e
S1 = Sn+1, the partition function is

(B h N Z e,BhSl ﬂ]slsz ﬁhsz [3]&25; . ,BhSNeﬁJSNS] —_ Z Hv‘l St (751)

Sii=1..N Sii=1..N I=

where the coefficients V; ¢ ’s can be seen as the entries of a (2x2) symmetric matrix :

(7.52)

e_ﬁ‘] e_ﬁ(h_‘]> :

] , phy B(h+J) -BJ
Vs,s—eﬁ;vﬁjYc 29 or V:[e ¢ ]
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Noting that Y. Vi, | V. 501 = V2 one finds :

Sio1,8i41°
Ze(BhN) =}, Vi =Tr(VY) =47+ 4" =41 |1+ (f)N] ~ A, (7.53)
s1==%1
where A, is the highest eigenvalue of V :
A1 = eP’ cosh Bh+ \/ €2B! (sinh Bi)? 4 ¢ =287 (7.54)
and the dimensionless free energy per spin reads :
Bf(B,h) =—1InA;. (7.55)

Most text book would conclude here saying that the knowledge of the free energy contains all the
information to compute the relevant quantities of interest. Very well, but let’s see how it works. The
relevant quantities of interest are the energy and the magnetization. We will see that indeed it is
quite straightforward to obtain their average, and their fluctuations, as a function of the temperature
1/B and the field . However wouldn’t it be more instructive to obtain their full distribution ?

Let’s start with the energy. The average and the fluctuations of the energy are indeed very easy to
obtain, especially in the absence of external field.

9InZ(B.N)

(E) = 3 ‘h:o — Ntanh(BJ) (7.56)
2 n
(E?) —(E)* = 91?[3(2{%1\7)’;1_0 = NJ (1 —tanh*(BJ)). (7.57)

In the presence of a field, the algebra is slightly more involved, but Mathematica will do it for you.

To obtain the distribution of e, we shall restrict the calculation to the zero field case. Again we
apply the Girtner Ellis theorem. —f f(8) = In(2cosh 8J) is differentiable, hence

Pc(e):meN<ﬁeS<€>>, with —s(e):szp[ﬁe—ln(ZcoshBJ)] (7.58)

The maximizing B = B* is solution of e = tanh $*J, hence 3*J = atanh(e) = % In %, which we
inject back into the function to maximize, to obtain
e l+e

1
s(e) = —Z—Jlnl_e+§1n(l—ez) (7.59)

Now let’s consider the magnetization. There is no conservation law for the total magnetization and
there is no reason why it should be fixed ! Hence one cannot derive a "grand-canonical" formalism
associated to this quantity and one must deal with it in the thermal-canonical setting. Fortunately,
there is a kind of miracle in the linear form of the coupling between the external field and the spins.
Because of this, one has that %anc(— B,h,N) is also the scaled cumulant generating function of

m="4"
_ 9*InZ.(B,h,N)

which in turn implies, by virtue of the Géirtner-Ellis theorem that if 2 (8, Bh) = limy_e 5 InZ(B,h,N)
is differentiable with respect to Bh, then M satisfies a large deviation principle and y(m,f) =
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supgy, [Bhm — A (B, Bh)] is the corresponding rate function. Altogether, everything takes place as if
the thermal-canonical setting associated with the conservation of energy was also a field-canonical
setting for the magnetization. In other words the canonical formalism holds because the field
imposes a constraint on the magnetization in the same way as the temperature does on the energy.
The field however does not have the status of an intensive thermodynamic parameter. In particular
there is no equilibration of the field between two subsystems.

In the present case,

_ JInZ(B,h,N)
M=

_ 9*InZ.(B,h,N) J(M)
M=o o

(7.61)

(7.62)

can be computed, again using your favorite formal calculator, to obtain an explicit expression ; for
instance

. *B cosh[Bh]sinh[Bh])
BeP sinh[Bh) + L= ‘
<M> _ \/e 2B 4-¢2B sinh[Bh)2] (7.63)

B (eﬁ cosh[Bh] + /e~2P + 2P sinh[ﬁh]Z) '

Well, this is not such a nice expression, but it is exact, and the same can be done for the variance...
The latter provides an explicit expression for the magnetic susceptibility defined as the response of
the magnetization to a field variation : } = %—’,‘;’ = BVar(M); which is again a response-fluctuation

relation.
Regarding P, (m,h,N) ~ ¢ N""B) and the computation of y(m, B), figure (7.4) displays A (B, Bh)

and its derivative for different 8, which are needed to compute the Legendre transform of A (3, 4)

3).\6%) d)\iﬁoh)/d Bh

0.5

FIGURE 7.4 — Useful plot for evaluating y(m, ), for B = [0, 1,2]

Note that for increasing 8, or lower T, A(f, Bh) develops a singular behavior in 0. Still, one can
show that, as long as f is finite, A (B, Bh) is differentiable with respect to S/ and one can solve

_ dA(B,Bn)

m= W (7.64)

to obtain (Bh)*, the position of the maximum of Bhm — A (B, Bh) and compute this maximum
y(m, B).

Figure (7.5) displays the statistical properties of the energy and magnetization of the 1d-chain of
Ising spins, we just obtained. It deserves some comments about the physics taking place in the
system. At the end of the day, all these calculations are not an end in themselves... At high 7', the
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FIGURE 7.5 — Statistical properties of the energy (top) and magnetization (bottom) for a 1d-chain of
Ising spins. From left to right : mean, then standard deviation of the energy (resp. magnetization) as
a function of 7 = 1/, for h = [0,0.5, 1], in (blue,purple,brown) and P.(e) (resp. P.(m)) for h =0
at T = [00,1,107",1072] in (blue,purple,brown,green). NB : Here N = 1, so that one can actually
see the shape of the probability, which otherwise is very rapidly extremely peaked, especially for
small T'. Only the positive side of P.(m) is shown; it is of course symmetric.

energy is maximum, the magnetization is very weak, even in the presence of an external field and
the standard deviation is of order one. When the temperature decreases, the energy also and the
magnetization grow, except in the case of zero field. In this case, we note that approaching 7 = 0,
the fluctuations of magnetization increase very sharply. This is further confirm by the distributions.
While the distribution of energy essentially narrows with decreasing 7, the one of magnetization
broadens. At low T all the values of the magnetization are almost equiprobable ! So, although the
average magnetization remains zero, the system actually behaves very differently. We shall see in
the next chapter, that these features signal the approach of a phase transition, which here only exists
atT =0.

Fully connected spins in a field

An other important case of interest, which can be solved exactly, is the so called fully connected
case, where the spins are assumed to interact with all the others. In that case, the hamiltonian reads

He({s:})=—JY.Y sisj— th,_ MN hMy +cst, with My =Y si  (7.65)
i j>i i

and the canonical distribution of the configurations reads :

1 1
P.({s;}) = —BH _ BIY; jsisisj+BhY;si 7.66
Wb =zean® " = zEnme (700

For h = 0, the distribution is exactly the one we dealt with in example (5.2), with a = J. The
calculation generalizes without difficulty to the case 4 # 0 :

1

Pe(m,B,h) = 2B Zeﬁf oy +BhMN(S(MN({sL}) — Nm) (7.67)
{si}
_ QmN) w(prgipmm) _ Ly (7.68)

Z(B,h,N) ~ Z(B,h,N)
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FIGURE 7.6 — Large deviation function (top row) and Probability distribution (bottom row) for
the magnetization of N = 100 fully connected spins for 2 = O (left column), # = 0.01 (center) and
h = 0.1 (right column), for three values of the temperature 7 = 1/, with § = [0,0.5,1,1.2] in
[blue,purple,brown,green] ; J = 1

with
)
V(. B, 1) = ~(s(m) + B 5+ Bhm), (7.69)
1+m_ 1+m 1-m_  1—-m
s(m) = — 5 In T T3 In 5 (7.70)

In the present case, one could directly access the distribution of the magnetization because the energy
of a configuration is entirely encoded into its magnetization H({s;}) = H(M{s;}). Figure (7.6)
displays the large deviation function y(m, 3,h) and the associated probability P.(m,f,h), for
several values of § and 4 in the case J = 1.

At high temperature, (T > T, = 1/J) the large deviation function has only one minimum. In the
absence of external field the Hamiltonian is symmetric with respect to the inversion of the spin signs,
and the only minimum is my = 0. The presence of a positive external field biases this minimum
towards mg > 0.

At low temperature, for 7 < T, = 1/J, the number of minima depends on the field intensity.
In the absence of external field, there are two minima, which take opposite values my = +m”*,
the equivalently most probable magnetization. Note that because of this symmetry the average
magnetization is still zero and therefore differs from the most probable value, whichever it is.
For low enough external fields, the two minima subsist, but they are no more symmetric in value,
nor in probability : there is only one absolute minimum, which corresponds to the most probable
magnetization, the equilibrium stable state. The other minimum is called a meta-stable state. When
the external field is large enough, the highest minimum disappears.

The distribution of the energy per particle P.(e = % can also be computed, from the knowledge
of P.(m) using the change of variable e = —J % — hm. However one should pay attention to the

fact that for fields 4 < J, there are two possible magnetizations m; »(e) leading to the same energy
value. As a result the law for changing variables P(e)de = P(m(e)) ‘%Me must be adapted to

P(e)de = P(my (e)) | 22| de + P(my e)) ’%‘de.
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FIGURE 7.7 — Graphical solution for the sadde-node equation of the fully-connected Ising model.
From left to right : A =0,0.01,0.1; T =1/, with § = [0,0.5, 1, 1.2] in [blue,purple,brown,green] ;
J=1;
Finally let’s compute the partition function Z(f,h,N).
m2 . * ﬁ *
Z(ﬁ,h,N) _ /dmeN(A(m)-‘rﬁJz-‘r,ma) ~ eN(A(m )+BJ 5= 4-Bhm ) 7.71)

where m*, the most probable value of the magnetization, obeys the saddle node equation :

d‘;(m) } 4 BIm* + Bh=0, (1.72)
m Im*
atanh(m*) = BJm" + Bh (7.73)

This equation has no analytical solution, but can be studied graphically, see figure (7.7). One
recovers of course the same observations as on the plot of the magnetization probability. Depending
on the temperature and on the amplitude of the field the equation has one or three solutions. In the
latter case, one is always a minimum. In the presence of a field, one of the two maxima is the global
maxima. In the absence of the field the two maxima are equivalent.

We have seen that, in the absence of external field, (m) = 0 for symmetry reasons. Although there
is no analytical expression for Z(f3, Bh,N), one can still compute

1 9InZ(B,Bh,N)

(m) = 5 === o (7.74)
_ 9 Y BI™ 4 B 775
= 2;2{2 S(fn ) *‘Is ) *‘ﬁ; m ( . )
= m"*(B,h) (7.76)

This result was earlier presented as a general result. It is interesting here to consider the limit 4 — O,
which for T < T, will pick up the positive maximum for m*(f3,h — 0) and not the true average. The
interpretation is as follow. In the presence of the field, however small, the symmetry is broken and
the unique global maximum is the positive magnetization. Once the system is in this macroscopic
state, it remains there, when the field goes to zero. Although the above statistical computation
knows nothing about the dynamics, it actually captures what is really going on in a real material :
at low temperature, although the two orientations of the magnetization are equally probable, once
the system has selected one orientation, it will stick to it because thermal fluctuations will never
provide the energy required to flip it, within a reasonable amount of time.

The splitting of the magnetization distribution into two separated peaks at low temperature is the
hallmark of what is called a phase transition, the central topic of the next chapter.



8.1

At the end of the previous chapter, we just saw a situation in which the probability distribution of a
macroscopic variable has two maxima. In some situations, the two maxima may even have the same
probability. Each of the maxima correspond to a different set of microscopic configurations of the
system. In the case of the fully connected spins in an external field /4, the two sets of configurations
corresponds to those where the majority of the spins are aligned, respectively anti-aligned, with the
field. These two sets of microscopic configurations define two different macroscopic phases.

In the presence of the field, one of this phase is more probable than the other and the relative weight
of the probability grows exponentially with N. How does the system behave when the field is
progressively inverted ? This is one of the question we would like to discuss in the present chapter.

Another appealing behavior of the probability distribution of the magnetization, is the extreme fla-
tening of the distribution in the absence of external field, when approaching the critical temperature
T.. The fluctuations of the magnetization around its most probable value must become very large !
And if the fluctuation are large, the response to an infinitesimal field will be as large. The goal of
this chapter is to be much more quantitative about these statements.

Thermodynamics of Phase Transition

Phase transitions has been first studied at the macroscopic level and it is useful to bridge the
gap between the statistical physics description we have discovered in the previous chapters and
the traditional thermodynamic one. We have already seen in section (6.1), how to connect the
thermodynamic potentials to the most probable values of the energy, the volume and the number of
particles depending on the ensemble of interest :

F(ﬁ,V,N):E*(ﬁ,V,N)—TS(E*,V,N), (8.1)
J(B,V,‘LL) :E*(ﬁ7vnu) —TS(E*,V,N*)—‘UN*(B,V,‘LL), (82)
G(vaaN) :E*(Bava) _TS(E*aV*vN)+PV*(BaRN)7 (83)
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Although, we are going to remove the * in the following notation, it is crucial to remember that
thermodynamics is the world of N — oo : all the macroscopic variable are at their most probable
value. And let’s recall that

as 1

22 _B=_ 8.4

P70 (8.4)

as P

ZC _Bp=—_ 8.5

A% PP=7 8.5

as —u

Z2 — _Bu=-—=2 8.6

5y = Bu=— (8.6)
or equivalently that

1 P u
dS = —=dE+ —=dV — =dN. 8.7
§=dE+ 7dN (8.7)

From this last equation, one obtains all the following totale derivatives,

dE =TdS — PdV + udN, (8.8)

dF = —S8dT — PdV + udN, (8.9)

dJ = —=S8dT — PdV — Ndu, (8.10)

dG = —SdT +VdP + udN (8.11)

and by consequences the expression of all possible partial derivatives. On top of this, using the
2 2
celebrated Schwartz’s theorem ;T?fy = %, one also obtains the so called Maxwell relations

between the partial derivatives.

Proposition 8.1.1 — Euler’s theorem. The extensivity of E,S,V,N ensures that E(S,V,N) is a
first-order homogeneous function : E(nS,nV,nN) = nE(S,V,N). The Euler theorem states that,
as aresult, £ = S‘% + Vg—g +N§—I€. Proof : simply derive by i and set n = 1.

As a result one obtains

E=TS—PV+UN, (8.12)
F =—PV +uN, (8.13)
J=—PV, (8.14)
G = lIN; (8.15)

and the Gibbs-Duhem relation SdT — VdP + Ndu = 0.

The classical setting used to describe phase transition is the Gibbs one, where the system is in contact
with a reservoir, which fixes the pressure and the temperature. The appropriate thermodynamic
potential is thus G(P,T,N) = Nu(P,T), where we consider only one specie system for the purpose
of simplicity. Although we consider here the most probable values, both the energy and the volume
are free to fluctuate according to the probability distribution

1 - e—sle,v vV
Pp(E.V,N:B.P) = —— s BEN* N(Be=s(e)+BPv) (8.16)
‘D Ly

with G(P,T,N) = —TlogZ,;(B,P,N) ~ N(e*(B,P) — Ts(e*,v*) + Pv*) = N(f(B,v*) + Pv*).
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As long as the probability distribution has only one maximum, the corresponding large deviation
function has only one minimum, the system is in one phase and the value of this minimum is
W1 (P,T). However, we have seen that depending on the values of P, T, (or i, T for the case of fully
connected spins), the system can be in one or another minimum, with different values of u in those
minima.

This is what is illustrated on figure (8.1), where the values of u in each phase are represented
as a function of P and T. Each is a surface, and the two surfaces intersect on a line in the P, T
plane. In the thermodynamic limit, the system must be at its most probable value, that is, it must
take the minimal value of u. This is why the surfaces interrupt themselves at the intersection :
the largest one, on each side, corresponds to the unstable phase, that is the lower minima in the
distributions of the fluctuating quantities. The coexistence line is simply given by the solution of
n*(PT) = ‘uﬁ(P’ T).

W p. T

u(p, Ty
l]

a-f coexistence line
in p-T plane

FIGURE 8.1 — Gibbs surfaces for a mono-component system of particles.

The equations of state of such a system describes how the most probable values of the energy and
the volume depends on the pressure and temperature set by the reservoir.

E(P,T,N)=Ne(P,T) 8.17)
V(P,T,N) =Nv(P,T) (8.18)
Note that v = 1/p, where p is the usual density.

The reader will have noticed that the partial derivatives of (7, P) are discontinuous at the coexis-
tence line. Those derivatives are

_ou
_ou
—s=— (8.20)

Hence there is a jump in the volume per particle and in the entropy per particle, when crossing the
coexistence line. This discontinuity can be observed in figure (8.2), where we illustrate the first
equation of state v(P,T)
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FIGURE 8.2 — Equation of state of a mono-component fluid at the gas-liquid transition for a
mono-component system of particles.

Proposition 8.1.2 — Gibbs rule. The Gibbs rule prescribes how many phases can coexist and
when they do, how many variables are fixed by the coexistence rule. Consider a system with r
different species of particles distributed amongst v coexisting phases. Each phase of this system
is described by two variables P and T, which are equal in all coexisting phases, and the (r — 1)
fraction of each specie, present in that phase. The chemical potentials associated with each specie,
Mk k=1..r» must be equal in all the phases. This translates into r(v — 1) equations. Hence the number
of independent variables is

f=24v(ir—D—r(v=1)=2+r—v (8.21)

For a one specie system, one phase will be described by two variables P, T'. Two phases will coexist
on the line P(T'), three phases will coexist only at one point in the parameter space P*,T*. It is
impossible to see more than three phases coexisting.

p) The Gibbs rule is very general. One should however remember that the number 2 comes from
the fact that the description of the monophasic system we are considering are described by
the two variables T, P plus the fractions of the species. For a system of spins on a lattice, there
are again two variables T, h, because the volume is irrelevant. Should one study a liquid of
spins, there would be three variables T, P, h, where h is the external field, to describe each
phase and the Gibbs rule should be adapted.

Proposition 8.1.3 — Fluctuations of v. We know from the fundamental proposition 5.6.1 and its
consequences that if w(f,P) = 4 logZ(B,P,N) = —%G(ﬁ,P,N) = —Bu(p,P) were differentiable
with respect to P, then the large deviation function of V, would be —BPv— B f(B,v), with —B f(,v)
given by the Legendre transform of w(f3, P) with respect to —3P.

However, in the present case, the signature of the phase coexistence is precisely that G(8,P,N) is
not differentiable. We are thus in the same situation as that of figure (4.3). One can still perform
the Legendre transform of —Bu (B, P) where it is differentiable or separately in each phase, but
there is a domain of v € [v%, vﬁ], corresponding to the coexistence regime, where it is undefined,
see figure (8.3).

To complement the curve, we should remember that in the coexistence regime u®(B,P) = uf (B, P),
which translates into f*(B,v%) + Pv* = fB(B,vB) + PvB, or

fa(vaa)_fB(vaﬁ):_P(Va_vﬁ)v (8.22)

which is nothing but the equation for the bi-tangent. Hence the equality of the chemical potential
complements the shape of f in the region where it can not be obtained by the Legendre transform

of —pu.
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FIGURE 8.3 — Isotherm of the Legendre transform of —fBu (7, P) with respect to —BP. It is well
defined only for v < v® and v > v#. In between, the bi-tangent construction reflects the equality of

the chemical potential in the coexistence regime.

We stress that the large deviation function of V is — f(3,v) — BPv. In other words it corrects for
1

the slope of the bi-tangent and sets it horizontal : the two possible values v* = p% and vf = o8

have the same probability, hence their coexistence.

Finally, when the temperature is varied, the values of v* and v# will vary. There are two possible
scenarii. Both are observed in systems of attractive particles exhibiting the usual gas-liquid-solid
transition scenario. In the case of the liquid-gas transition, the coexistence region shrinks when the
temperature is increased and the two coexisting values of v collides in a so-called critical point,
(T, P.), above which there is no more distinction between the gas and the liquid ; one talks about
a super-critical fluid (see figure 8.4). In the case of the liquid-solid transition, there is no critical
point; the two coexisting values of v never equalize, whatever the temperature. The underlying
reason is that a liquid and a solid having different structural symmetry, there can be no path going

continuously from one to the other.

Different phases at the macroscopic level correspond to different maxima in the probability dis-
tribution of the local specific volume, hence different minima of its large deviation function.
The latter is thus not convex. This in turn translates into the fact that the Gibbs free energy
w(B,P) = —k,Tlog(Z(B,h)) is not a strictly convex function. It has singularities. We just saw that
indeed the first derivative are discontinuous on the coexistence line. One talk then about first order

phase transition.

At the critical point there is no more discontinuity of the first derivative. But the free energy still
has singular behavior at higher orders. One talk then of a second order phase transition, or more
generally of critical phenomena. Discussing such critical behavior, is the purpose of the next section.

T Critical

point £
Gas E
=

. 3
Liquid &

st

Liquid-gas E}
equilibrium ,‘I’

= Solid
[
Dilute gas-solid equilibrium - Triple point
(1/v)

FIGURE 8.4 — Phase diagram : Constant pressure plane, 7, 1/v plane (left) and the full (P, T,v)
view (right). Remember that these diagram should be seen as a surface v(7, P) or p(T, P), whith
T, P set by a reservoir and v or p the most probable value of the observable V /N or N/V.
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The ferro-paramagnetic phase transition

One of the fundamental properties of an electron (besides that it carries charge) is that it has a
magnetic dipole moment, i.e., it behaves like a tiny magnet, producing a magnetic field. This dipole
moment comes from the more fundamental property of the electron that it has quantum mechanical
spin. Due to its quantum nature, the spin of the electron can be in one of only two states ; with
the magnetic field either pointing "up" or "down" (for any choice of up and down). Atoms with
filled electron shells have a total dipole moment of zero, because the electrons all exist in pairs
with opposite spin, which cancel each other. So only atoms with partially filled shells can have a
non-zero magnetic moment. These unpaired dipoles (often called simply "spins" even though they
also generally include angular momentum) tend to align in parallel to an external magnetic field, an
effect called paramagnetism. Ferromagnetism involves an additional phenomenon, however : in a
few substances the dipoles tend to align spontaneously, giving rise to a spontaneous magnetization,
even when there is no applied field. Only a few substances are ferromagnetic. The common ones
are iron, nickel, cobalt and most of their alloys, and some compounds of rare earth metals.

Ferromagnetism only occurs at temperatures below a certain critical temperature, called the Curie
temperature. This ferro-paramagnetic transition is the epitome of critical phenomena. Intuitively
one understand that the thermal fluctuations destroy the ordering of the spins on large distances
responsible for the macroscopic magnetization. The way the ordering take place when lowering the
temperature and crossing the critical temperature is the topic of this chapter.

Similarities with the liquid-gas transition
The Hamiltonian of a system of N spins in a field reads :
H({s;}) = H"™({s;}) —hM({s;}) = —J Z SiSj— th, = 72 Z SiSj— th, (8.23)
<i,j> i ]v l

where }';,;) is the sum over the first neighbors spins of s;. Hj,, denotes the Hamiltonian in the
absence of external field and J is the so called coupling constant.

The probability of a microscopic configuration of spins {s;} in the canonical setting is thus

1 .
- — = BH™({si)+BrM({si})
p({si};B,h,N) ZBINC (8.24)
The probability for the magnetization per spin is
1
,h,N) ({si)S(M({s;}) = Nm) = o NP/ (mB)=hm) (8.25)
with
~NBf(m,B)=log }" e P*" NS (M ({s:}) = Nm) (8.26)
{si}
and
Ze(B,h,N) =Y e PH" (sip)+BaM({si}) / dm e VB (mB)—hm) (8.27)
{si}

The large deviation function of m is thus —f f(f,m) + Bhm, which is the formal analogue of
the large deviation of the volume per particle —f3 f(f,v) — BPv, in the case of the study of the
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FIGURE 8.5 — Phase diagram for the Ising model in 2 dimensions

liquid-gas transition. As already discussed, everything happens as if 4 was playing the role of an
intensive thermodynamic parameter, here —P.

One thus expects the same kind of thermodynamic phase diagram as those presented on figures (8.2)
and (8.4). There is however a noticeable difference as can be seen on figure (8.5). Because of the
(siyh) — (—s;,—h) symmetry of the Hamiltonian, the isothermal coexistence lines all take place at
h = 0. As aresult there is a first order transition for 7 < T, when the field change signs. But it has
no equivalent when varying T at constant 4. Either /& # 0 and there is a field induced magnetization
at all temperature, or 7 = 0 and magnetization takes place spontaneously through the critical point.

Critical behavior

Leaving aside the discussion of the first order transition, we now concentrate on the critical
transition taking place at (7,,h.) = (T¢,0). Such critical transition are also signed by the presence
of singularities in the "Gibbs" free energy g(f,h) = —% logZ.(B,h,N). These singularities are
described by critical exponents.

p) Warning : the wording Gibbs free energy in the case of magnetic system is commonly replaced
by free energy, even denoting it f. The confusion is total : the same letter and same wording
are used for two different functions f(m;f) and g(f,h)... Here we will stick to the notation
g(B,h), but we shall also call it free energy, and ... we shall later give a new name, the Landau
free energy, to f(m; ). Sorry, history has long time tails...

It is important to note that for any finite NV, the partition function is a finite sum of regular functions,
and as such cannot be singular at any finite temperature. Singularities in the free energies only arise
in the thermodynamic limit N — oo.

The first derivatives of the free energy are continuous but remain singular. One introduces two critical
exponents to describe the average magnetization close to the critical point (z, = % he) =(0,0) :

(m) ~ P, (8.28)
(m) ~ |n|'/® (8.29)
Further exponents are introduced to describe the response functions :

de) 1 dle) N

= [ _ 2 oo
G oT kT2 0B k,T? o~ t ’ (8.30)
d(m) 1 d{m) N 2 gy
X="n *kTTaﬁh*kTT‘Sm ~1 ’ (8-31)

(8.32)
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where the primes indicate the possibility that the exponent can be different on both sides of the

transition and §x? is a generic notation for (x?) — (x).

An essential elements of critical phenomena are the correlations amongst the individual units,
composing the system. As a matter of fact the only way for a system of locally interacting units to
build up spontaneously a macroscopic quantity such as the magnetization, is to develop long range
spatial correlations. The spatial correlation between two spins s; and s; separated by a distance r;;
reads :

Clrg) = )= ) {57) ~ e 050, with €~ 6.3
rij

This last formula expresses that the correlations develop a power-law dependence, with an exponen-
tial cut-off for distances larger than &, with & diverging at the transition.

It is now easy to understand why the response function diverges. Because the spins are correlated
on long distances, when they respond, they do so collectively. It thus induces macroscopic change
of the magnetization. Formally, one can indeed relate the amplitude of the fluctuations of m to the
integral over space of the correlation function.

One thus expect relations between the exponents ; and indeed, the exponents describing the response
functions (a,a’) and (7,7’) are related to those of the correlation function (v, V') and n, as we
shall see in more details in the following sections.

Finally, the above exponents exclusively refer to the static properties of a critical system. However
dynamic properties of the system may become critical, too. Especially, the characteristic time 7, on
which temporal correlations decreases, also diverges and is related to the correlation length by a
dynamical exponent z : T ~ &*.

Why are these exponents so important ? Experimentally, the exponent 8 has been measured in
different magnetic systems and was found to be very similar § = 0.31+0.01 in all systems. Even
more surprising the shape of the liquid-gas coexistence curve close to the critical point was shown
to also follow p; — pg ~ 1P with B = 0.32+0.005 in sulfurhexafluoride and in He. This so called
universal behavior suggests that the value of B must be rooted in some fundamental property,
irrespective of the details of the system of interest. Furthermore, we shall see that the so-called
mean field approximations actually fail in predicting the correct value for  as well as that of the
other critical exponents. One of the central achievement of statistical physics is to have understood
the deep physical origin of these discrepancies. On the way, it has provided physicists with a set
of new concepts, which are now used in many fields of physics, and beyond : the renormalisation
group ideas.

The role of dimensionality

We have seen in section (7.2) that for the 1d-chain, there are anomalous behaviors for the magne-
tization and its fluctuations when 7" — 0, but nothing significant occurs at any finite temperature.
Onsager has solved the 2d-Ising model on a square lattice and has thereby proven the existence of a
phase transition at finite temperature. It is actually possible, following Landau and Peierls to show
that there should be a phase transition at finite temperature for the Ising model in 2 dimension, at
odd with the 1d case.

Proposition 8.2.1 — Peierls argument. Starting from a fully magnetized state at 7 = 0, the
argument consist in evaluating the change in free energy of the system if one creates a domain with
a finite fraction of spins, with opposite magnetization, as illustrated on figure (8.6) below.
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FIGURE 8.6 — Droplets of -1 spins in a surrounding system of + 1 spins in 1d (right) and 2d (left).

In 1d, the energy cost for creating a domain AE = 4J and the entropy gain AS = log2N (each
boundary of the domain has N possible positions). Hence AF = 4J — T log2N. In the thermodynamic
limit, AFF — —oo, so that domains will form at any finite temperature. Domain walls spontaneously
appear everywhere for entropic reasons and there is no possible long range ordering of the spins at
finite T

In 2d, for a droplet with a perimeter composed of n = gN spins, with 0 < g < 1, the energy cost
depends on the exact shape of the boundary but scales like AE ~ 2nJ. The number of configurations
for such a domain scales like (z — 1)", where z is the lattice coordination, because starting from
any point of the boundary, there are typically z — 1 possible directions to proceed in drawing
the boundary. This is however an over estimation. Hence AS ~ nlog(z — 1) and AF = gN(2J —
Tlog(z—1)). The free energy changes sign for 7, = 2J/log(z — 1). In the thermodynamic limit,
for T > T, AF — —oo and again droplets form and destroy long range order, while for 7 < T,
AF — +oo, forming droplet is infinitely unfavored and the ordered phase is stable.

In 3d, there is also a transition at finite temperature, but there is no exact result.
In 4d and above, the critical exponents take the values prescribed by mean field approximations

The dimension above which a given transition occurs for T > 0 is referred to as the lower critical
dimension and the one above which the critical behavior is captured by mean field approximations
is called the upper critical dimension.

Mean field approximations

The most famous mean field approximation for the Ising model is the Curie Weiss approximation.
The idea is to consider a specific spin say s; and consider that the coupling to its neighbors acts
as an external field of amplitude z(m), where z is the number of neighbors and (m) is the average
magnetization per spin. In this case the Hamiltonian reads :

Hew({si}) = =1 ) sisj—hY si=—(Jz(m)+h)) si. (8.34)
<i,j> i i
One recognizes the Hamiltonian of a system of independent spins in an external effective field

hegy = Jz{m) + h. Using the results of section (6.3), one obtains, recalling that for independent
spinsm = —e/h:

P(m: B, h) = 7 /31 5 N Bhegpmsm) it (8.35)

l14m, 1+4m 1-m_  1—m
— In > T3 In > and (8.36)

Z(B,h) = (2cosh(Bhes)™ (8.37)

s(m) =
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The key point is that 4.y is a function of the average magnetization : the above equations are not
closed. Indeed computing the average magnetization, one finds
_ dlogZ(B,h)

(m) = B tanh(BJz(m) + Bh), (8.38)

which must be solved to find (m)(,k) and inject it into the above two equations. This last equation
is a self-consistent equation for the mean field approximation : when the magnetization takes its
average value, the effective field should lead to an average magnetization consistent with it.

In the above formulation, the shape of the distribution P(m; 8, /) is not very apparent. An alter-
native approach, although very similar, is not to average the magnetization, but consider it as a
random variable, which fluctuates from one configuration to another, but is homogeneous over the
configuration s; = m({s;}). In this case one has that

Z sj=zm (8.39)
and the mean field Hamiltonian reads

Hyr({si}) = stlZsJ—th,— (Jzzm({si})+h>2si——m ({si}) — hm({si}).
(8.40)

One recognizes the Hamiltonian of a system of fully connected spins in a field 4. Using the results
of section (7.2.2), one finds :

1 1 Jz 2
P(m;B,h) = eN(s(m)+ﬁh1n — 76N(s(m)+ﬁ7‘m +ﬁhm)’ with (8.41)
B =26 )=z
1 1 1— 1—
s(m) =— —iz—m In —gm — 2m In 2m and (8.42)
Z(B,h) = / dmeN(s(m)+B %5+ lm) (8.43)

This time there is no effective field. To obtain the mean magnetization, one computes Z(f3,4) using
the Laplace approximation :

with m*, the most probable value of m, which satisfies
BJzm* + Bh = —s'(m*) = atanh(m*), (8.45)

which is exactly the same self consistent equation as in the case of the Curie-Weiss approach...

Altogether we have started with a model of spins with short range interactions. The Curie-Weiss
approximation turns it into a model of independent spins in an effective field ; and the final solution
is that of a model of fully connected spins ! In particular, we had solved equation (8.45) graphically
(see figure 7.7); in the zero field case (h =0) :

— for BJz < 1,(i.eT > T. = Jz), there is only one solution (m) =m* =0
— for BJz > 1,(i.eT < T. = Jz), there are two symmetric solutions (m) = +m*
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The two above approaches corresponds to the two ways to see why mean field approximations
simplify so much the calculation. In the first one, it transforms a Hamiltonian of interacting
entities in a Hamiltonian of independent units, for which the partition function easily factorizes.
In the second one it allows to express the interaction part of the hamiltonian as a function of
the macroscopic variable of interest only : Hi"%. ({s;}) = Hit.(m({s;})) ; so that one can directly
compute the large deviation function :

B fur(m,B) =~ log Y e BN 5 (1 ({5}) = Nm) (8.46)
{si}
= _Wllog [Q(m,N)e_ﬁHﬂtF(’”) = Belto(m) — s(m). (8.47)

Let’s come back to the critical exponents, which describe the way the magnetization depends on
t= % and h, close to the critical point (¢.,/.) = (0,0). These exponents are entirely encoded in
the shape of the large deviation function f3 fysr (m, B) close to the critical point :

BJlz , l4+m 14m 1-m_ 1-—m
——m

— Bhm+ > In 2 + > In > (8.48)

ﬁfMF(m;th) =

Since the magnetization begins very small at the transition, one can expand the above expression in
m close to zero and find
2 4

m m
5+ 55— Bhm. (8.49)

ﬁfMF(m;B,h) ~t 2

from which it is straightforward to obtain the equation satisfied by the minima m* of fir :
m*> = —3tm* +3Bh (8.50)

It is now clear that
— forh=0,andt < 0, m* ~ P, with B = 1/2
— fort =0, m* ~ h3, with & =3
Deriving the equation satisfied by m*, with respect to the field, one obtains a relation for the

magnetic susceptibility

B

. (8.51)

and the associated scaling, valid both for ¢ > 0, where m* = 0, and ¢t < 0, where m e~ X~ 1Y
withy=¢ =1.

Finally, recalling that, in the mean field approximation, e* = —Jz’”{ — hm*, one finds that the
specific heat
de* de* adm*
T P T (8:2)

from which one finds that

— forh=0,andt >0,¢,=0
— forh=0,andt < 0,c,=3/2
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and concludes that the specific heat is discontinuous at the transition and that o = o’ = 0.

R) Apart from the connectivity z of the network, which in all finite dimension is just a number,
the result of the calculation is independent from the dimension. Hence the mean field approxi-
mation predicts a transition at finite temperature in 1d. This is completely wrong ; we have
seen that there is no phase transition at finite 7" in 1d.

p) Table (8.1) compares the values of the exponents obtained from the mean field approximation,
with those obtained exactly from the Onsager solution in 2d, and from the best numerical
estimates in 3d. The least to say, is that the mean field prediction are pretty off in dimension
2. They are slightly better in dimension 3 and exact in dimension 4 !

| |d=2| d=3 |d=4]|MF |
| o 0 | 011008(1) | 0 | 0 |
| B | 1/8 | 0326419(3) | 1/2 | 1/2 |
|y | 7/4 | 12370750100 | 1 | 1 |
|8 | 15 | 4789%84(1) | 3 | 3 |
|n | 1/4 ]0.0362982) | 0 | 0 |
v | 1 ]0.629971(4) | 1/2 | 1/2 |

TABLE 8.1 — Critical exponents for the Ising model in dimensions 2,3,4 and in mean field (MF).

What did we assume in the mean field calculation, that went so wrong ? First less stress that
sufficiently away from the critical point the mean field calculation essentially does the job. It
predicts a zero magnetization at high temperature and the fact that the symmetry is spontaneously
broken at ;. So the issue must be related to the physics at the proximity of the critical point.

Computing the difference between the true Hamiltonian and the Curie-Weiss one

H({S,}) HCW {Sl =—J Z S, (853)

<ij>

one clearly sees that we have neglected the fluctuations. Essentially we have supposed that the
average over the neighboring spins is equal to the magnetization per spin, that is the average over
all the spins. At high temperature, the spins are fluctuating almost independently from each other,
and the system must look like an old black and white TV white noise. In that case, taking a very
local average, will indeed already lead to a zero magnetization, which is equal to the large scale
average. At low temperature, most of the spins are, say +1, and there are few small regions where
the spins are —1. Since the energy cost is in the interfaces, these small regions must take the shape
of droplets, with sharp interfaces. In this case computing a local average, will most of the time
produce m = 1, sometime m = —1, which is also correct. We understand from this analysis that
the organisation of the configurations, close to 7. must be highly specific. The magnetization is
close to zero; so there must be as many spins +1 and —1. However the spins cannot be organized
independently from each other, like the high 7" white noise, otherwise the response function would
not be large. In the critical region there must be large domains, which collectively respond to a
tiny external field. But they can also not be organized into two well separated phases, otherwise
that would be phase coexistence, the signature of a discontinuous transition. Try to imagine the
organisation of the spins ... before looking at figure 8.7.
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. . _ _ 2 _ . _
FIGURE 8.7 — 2D Ising model, with J =1, T, = Tog(11v7)’ h. = 0. From left to right T =1,
T=2269~T.,T=3.

At the critical point the spins organize in a scale free, fractal structure. In other words there is no
characteristic size, such that the local average would equal the global one, hence the failure of the
above mean field approach. Also it is this structure which is responsible of the divergence of the
correlation length, hence of the response function.

Landau and Ginzburg-Landau theories

Landau has proposed in 1937 a phenomenological approach to describe most phase transitions, on
the basis of very general concepts.

We have seen above (eq. 8.49) that the critical exponents were obtained from the expansion of the
free energy close to zero, in the vicinity of the critical temperature. Landau’s idea was that the
shape of this expansion is entirely governed by the symmetries of the system and the type of the
so-called order parameter. In the case of the Ising spins para-ferro transition the Hamiltonian is
invariant under a change of all spins s; into —s;, and the free energy of the system should obey this
same symmetry. Also the magnetization m is a scalar quantity. Hence the expansion in m of the free
energy should only contain even terms in m. Whatever the detailed shape of the exact free energy,
the expansion will always be of the same form, therefore the critical exponents will also take the
same value for all systems sharing the same symmetries.

p) This is a wonderful abstraction that justifies the observation of universal behaviors. It is also
of practical interest to classify systems in universality classes. Here the symmetries are quite
obvious ; but think about richer systems such as liquid crystals or magnetic systems with a
spin taking all possible orientations in space....

Unfortunately at that level of description, the Landau theory is doomed to recover only the meanfield
values of the critical exponents.

The Ginzburg-Landau theory, first introduced to describe superconductivity, is a rather natural
extension of the Landau theory to take into account the spatial fluctuations, which are missing in
Mean Field theories. It simply states that the order parameter can fluctuate in space and replace the
homogeneous magnetization m, by a spatial field m(¥), where 7 denotes the position in space. Now
the free energy must be a functional of m(7). The simplest assumption, following the same spirit as
that of Landau, is then to write this functional as an expansion in m, and in its successive spatial
derivatives Vm, while preserving the symmetries of the system, and the fact that the free energy is
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a scalar. For instance in the case of the para-ferro transition of a system of Ising spins :

F(m(?)):/d?(f(m)+KVm2+...) with f(m):%m2+um4+... (8.54)

Then the usual integral on m, used to compute the partition function, must be replaced by a
functional integral over all possible functions f(7) and the derivatives with respect to i or m,
used to compute the average magnetization, or the susceptibilities, must be replaced by functional
derivatives with respect to functions /(7) and m(7). One sees that the algebra may become more
complicated, but the general ideas exposed above remain valid and, because we are now playing
with spatially varying quantities, it is also possible to directly compute the spatial correlations from
the functional derivatives of the free energy.

Beyond technical difficulties, there are a number of issues one can think of when implementing the
Ginzburg Landau theory. How should one determine the minimal degree of the expansion in m and
in Vi, and how to be sure that they are consistent ? Is it clear that the integrals we have to compute
are convergent ? Finally, and not the least, how good an expansion in gradients can be to describe
the kind of self-similar pattern, one can observe at 7, on fig 8.7 ?

Dealing with these questions goes beyond the scope of the present course, and constitutes the realm
of statistical field theories.

Scaling laws and Renormalisation Group

Scaling laws

Expanding the free energy as done in the Landau theory requires the assumption that the free energy
is regular in the order parameter. As a consequence the singularities are all encompassed in the
dependance of the order parameter on the control parameters, such as the temperature and the
external field.

An alternative way of thinking is to consider that the free energy dependance on the order parameter
and the temperature is singular itself close to the critical temperature, and that the singular part f;
must obey some specific property at the root of the values of the critical exponents. Domb, Kadanoff
and Widom, made the hypothesis that f; obeys a scaling invariance property :

fo(APt,A90) = A9 f,(t,h) (8.55)
From this relation we shall now demonstrate that all exponents are in fact not independent.
Taking the partial derivative with respect to & gives a scaling relation for m(t,h) :

AIm(APt, A9h) = A9m(t,h) (8.56)

d—.
Setting & = 0 and A = (—)~'/7 in this equation yields m(z,0) o< (—t)Tq, from which we obtain
B = %. Similarly, setting 7 = 0 and A = 4~/ into the scaling relation for m yields § = d%q.

Taking one more partial derivative with respect to & gives a scaling relation for the susceptibility
x(t,h)

A yr (AP, Ah) = A% xr (t,h) (8.57)

Setting h=0and A = (t)~"/? forr | 0 (resp. A = (—1)~'/? for t 1 0) yields y =9 = %.
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Deriving twice with respect to ¢, one finds that the specific heat c¢; obeys the scaling relation
AP ey (APt Ah) = Adey(t,h) (8.58)

Setting h=0and A = (1)~"/? forr | 0 (resp. A = (—t) '/ for t 1 0) yields ¢ = o' =2 — %.

Hence, as a consequence of Widom scaling, not all critical exponents are independent but they can
be parameterized by two numbers p, g with inter-relations such as

a=a =2-B(5+1) (8.59)
Y=Y =B(6-1) (8.60)

Note that p and g can be real numbers, hence allowing for non fractional critical exponents.

These relations are experimentally well verified for magnetic systems and fluids and therefore
suggest that the Widom scaling hypothesis is indeed verified. But why ?

The renormalization group
General idea

The ideas behind the renormalization group methods allow to give a precise meaning to the concept
of universality classes and the resulting scaling laws which appear in the neighborhood of a critical
point.

We have seen that assuming a uniform order parameter, or assuming that a local average is a good
estimator of the order parameter are very poor hypothesis because they neglect the fluctuations and
their correlations, which not only exist, but also must be very specific to account for a pattern such
as the one of fig (8.7) at T.. Now let’s imagine you consider a magnetic system with 7' 2 T, and
instead at staring at all the details of the fluctuations you un-zoom and look at less details, while
the system itself remains unchanged. Once un-zoomed, the system is described by less degrees of
freedom (like a picture with a lower resolution would contain less pixels). Then you iterate this
operations many times up to the point where the system is only described by a few numbers, if
not simply one, say the magnetization. This magnetization is zero, because the system is in the
paramagnetic phase. Repeat the operation, starting with 7' < 7. You would find after many iteration
that the system is magnetized, because the system is in the ferromagnetic phase. Finally, start with a
system precisely at 7.. You would not be able to conclude wether the system is in the ferromagnetic
phase, or in the paramagnetic phase because you are precisely at the transition. So we see that the
two well-defined phases (para and ferro) behave as attractors for this iterative process, while the
transition point acts as an unstable fixed point (whenever you start a little bit above or below T, the
process leads you to a clear conclusion about the phase in which the system is). The renormalization
methods consist in formalizing the procedure we just described.

To be more precise, let’s consider a system with N ~ L degrees of freedom, where L is the physical
extension of the system and d is the space dimension. This system is at some temperature 7', and the
degrees of freedom are coupled by some coupling constant J. Un-zooming consists in a procedure
by which the system size is reduced to L' = L/b, b > 1 and the number of degrees of freedom is
reduced to N’ = (L/b)?. To do so, we will need to propose a specific way to aggregate the degrees
of freedom, which will depend on the specific system of interest (see below). We also want the
system to remain unchanged by this procedure. What do we mean by this ? Well, we want its
macroscopic properties to remain unchanged. In other words we want its partition function Z(7,J)
or F(T,J) =k,Tlog(Z(J,T)) to retain its most essential properties. Since we have modified the
degrees of freedom, it is likely that the couplings will need to be adapted, and maybe the temperature
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too. That is we will have to find the renormalization group transformation (7”,J") = R,(T,J) such
that F'(J',T') ~ F(J,T), where the ~ sign denotes the equality of the essential properties (to be
made precise below).

lllustration on the case of the site percolation

In the site percolation problem, each node of a lattice of size L? is occupied with a probability p
and the probability of a configuration %’ is given by

]P)((g) — p"l()canf'ree (8.61)

In this purely geometrical problem, we shall replace the partition function by the percolation
probability P, (L, p) that there exists a continuous path of occupied sites from one side to the
other of the lattice of size L :

Pperc(L,p)= ), P(%) (8.62)
€ with path

which is a growing polynomial of p, the shape of which is sketched on fig. (8.4.2). We therefore
want to find p’ = R,(p) such that Pp.o(L',p") = Pperc(L, p), with L' = L/b, b > 1. The general
problem is not so easy to solve. However, in the limit of small p, the only existing paths are
the straight lines from one side to the other, hence P (L, p — 0) ~ LpL(1 — p)(LQ*L) ~Lpt.In
the limit of p close to one, the only way not to have a path is to have an empty row across the
system, hence Ppe,c(L,p — 1) ~ 1 —L(1 — p)Lp(LZ*L) ~1—L(1— p)t. Imposing the equality of
IPperc for the original and the un-zoomed system, one finds that for p — 0, p’ = (bp)? and for
p— 1, 1—p' = (b(1—p))’, from which one infers the right drawing of fig. (8.4.2). Here the
renormalization group transformation is a simple one dimension iteration. It is straightforward to
see that there are three fixed points, two stable ones p = (0, 1) and one unstable one p = p.. This
example clearly illustrates the ideas expressed in the previous section. Iterating the renormalization
group transformation, the iteration proceeds towards one or the other stable fixed points, which
correspond to the caricatures of the non-percolated (empty lattice) and percolated (fully occupied
lattice) phases, except if it is initiated exactly at the unstable fixed points p., which denotes the
critical transition.

Finally, close to the transition, one expects that the pattern of occupied sites is highly non trivial
and characterized by a diverging correlation length & ~ A |p — p.|~". If the original system and the
un-zoomed system are identical, then all lengths must be zoomed out, in particular, &(p) = b€ (p'),

'gerc PI‘
1 - 4 -
9
L7
__1 o fe iy 1 e 2P

v

-z
b

L

FIGURE 8.8 — Site percolation (from left to right) : a lattice of size L with n,.. occupied sites,
IPpere(p) for increasing L and the renormalization transformation p’(p) with two iteration paths.
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namely A |p—p.| = bA|p' — p.|”". One sees that we cannot gain any information on A, the
prefactor of the singularity. However, by linearizing p' = Ry(p) close to p. : p' = p.+ %( P—Dc)s

we find that

dRy

dp
in other words that the critical exponent Vv is a direct expression of the linearized dynamics of the
RG transformation in the neighborhood of the critical point.

) = b; (8.63)
Pc

Computing Vv thus requires the knowledge of the transformation for large L, close to p., while we
only know it close to p = 0 and p = 1. Still, let us perform a so-called uncontrolled approximation :
let’s compute Rb for a system with L =2, when we divide it by a factor b = 2 and assume it is a
good approximation for L large !... By a simple examination of all configurations, one finds that
Pperc(L = 2,p) = 2p* — p* and Ppere (L = 1,p') = P/, hence p' = Ry(p) = 2p* — p* from which
one deduces p. = 0.618 and v = 1.635. Not so bad given that the correct values are p. = 0.5931
and v = 1.33, certainly much better than the mean field results p. = 0.5 and v =0.5!

Back to the concept of universality

We shall illustrate this concept following Kadanoff and a real space renormalization scheme that he
proposed for a system of spins on a lattice. The idea is to group the spins 0; = +1 by blocks and
replace the block by a meta-spin s; = sign(Y;c; 0;). The probabilities of the configurations in the
original system and in the un-zoomed one are respectively :

P({01}) = exp—BH ({a1)) (8.64
P({s1)) = exp—B'H' ({s1)) = ;{ ¥, ew-pi({o)) (8.65)

In general H' is far more complex than H : even if H contains interaction amongst nearest neighbors
only, H' would contain interactions amongst next nearest neighbors. And further iterating would lead
to a nightmare of interactions. But let’s imagine for the purpose of clarity that we consider systems
with interactions between first (coupling constant J;) and second (coupling constant J,) nearest
neighbors, such that the RG transformation does not create more complex interactions. Then the
RG transformation is described by a flow in the 2 dimension parameter space (K| = BJ;,K, = BJ2)
as illustrated on fig. (8.9).

Consider first the left panel. A specific physical system is defined by the values of the coupling
constants (J;,J2). Decreasing the temperatures amounts to vary (Kj, K») along the green straight

K
P

FIGURE 8.9 — Two RG flows : left, with a single universality class and right, with two universality
classes each one associated to a different critical points (in red), separated by a so-called tri-critical
point (in black).
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lines starting from the origin (8 = 0,7 — o). For a given T, corresponding to a given point in
this K-parameter space, following the RG-flows tells us wether the system is in the disordered
high temperature phase (the origin fixed point), or in the ordered cold temperature one (here the
fixed point at infinity). When the green straight line crosses the black arrow pointing towards the
unstable (red) fixed point, corresponds to the critical temperature. One sees that for different systems
(different green straight lines) the critical temperature does change. However the linearization of
the RG flow around the critical point, and more precisely the positive eigenvalue of the linearized
operator will set the same critical exponents for all these different systems. One says they belong to
the same universality class. The right panel describes a more complex situation where there are two
universality classes.

p) Stating that the RG-flow remains confined to the initial two or one parameter space of the
model is in general wrong. Note however that at the conceptual level, this is not an issue. If
one starts with a model whose Hamiltonian that takes into account all possible couplings,
then the RG-flow will remain by definition in the parameter space of the initial model, and
the conceptual drawing presented here remains valid.

Two examples for systems of Ising spins

The 1D Ising chain
Given that we know that there is no phase transition in 1D, we shall not expect great news here. But
we will learn an aggregation procedure called decimation.

Consider N spins in a chain, the partition function of which is

z=Y Y .Y =Y Y ) PR (8.66)

si=xlsH=+1 sy==£1 si=xlsp=£1 sy==%1
Let’s group the odd and even spins (assume N is even) :

z=Y Y . X% [Z Y ...e—ﬁH] (8.67)

si=tls3=+1 sy 1=*1 | sp=*t1s4==1

=Y Y .. ¥ [Z efnalrts) y eKS4<S3+Ss>...] (8.68)

si=tls3=41 sy_1==%1 | sp==+1 sq==%1
where K = J.

It is easy to check case by case, because spins only takes values +1, that

Z Ksalsits3) — 2coshK(s)453) = oS s153 (8.69)
sp==+1

with g =1n [2 (coshZK)l/z} etK'=In [(coshZK)lﬁ] .
The same holds for all N/2 even spins, so that :

Z(N,K) = Ne(K) Z eK/Zoddspinssisi+l — eNg(K)Z(N’ — N/2,K’). (8.70)
odd spins

We therefore have an explicit relation between the partition function of the decimated system and
that of the initial system, which are identical, up to a regular pre-factor, provided that the coupling
constant are renormalized according to the relation K’ = R, (K) we just derived.
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Solving for the fixed point of the RG-transformation Ry, one finds that there is no other fixed point
that K = 0, corresponding to the inifinite temperature, disordered phase : no phase transition in 1D.

Hierarchical Networks

Given that the whole idea of universality classes, is that the microscopic details of the system does
not matter, why not implementing the Ising model on a lattice which is 2D, but at the same time
allows for an exact treatment of the RG flows ?

Convenient lattices are hierarchical ones such as the Berker lattice (Fig. 8.10). Note that the lattice
is built, starting from the completely aggregated lattice towards the original system with N spins.
The RG iteration, of course goes the other way round as usual.

o
A A

A| — ——e
B B

4

FIGURE 8.10 — Berker lattice

The calculation consists, in way directly analogous to the previous one, in performing the sum of the
partition functions grouping the spins that have only two neighbors, and are therefore not connected
to the spins outside the diamond they belong to. Inside each diamond, one must compute :

eK(S]52+S1S3+S4S2+S4S3) — eK(S2+S3)(S1+S4) (8.71)
s2,53==+1 §2,53==%1

=2+42cosh(2K(s1 +s4)) (8.72)

=2 4 o8 HKs1se, (8.73)

with g = In [2 (cosh4K )1/ 2} etK'=1n [(cosh 4K )1/ 2] . The tiny difference with the previous case,
is that here the RG transformation has a non trivial fixed point.

This fixed point K, ~ 1/4, is small enough that, we can approximate K’ = R,(K) by K’ ~ 4K?,
close to K. Then, linearizing in the neighbor of K., we find

dRy
dK
where b is the scaling factor of the decimation process. Here the number of bonds at each iteration is
divided by 4. So is the number of spins in the large N limit. Accordingly b? = 4, with d = 2, hence

b =2 and v = 1, which is the correct value for this critical exponent for the para-ferro transition of
the Ising model in two dimension !

A%

It should however not be concluded that all the critical exponents of the Ising model in 2d can be
found this way. Hierarchical lattice still miss parts of the correlations close to the critical point.
Hyperscaling

The ideas of the renormalization group also allow to establish relations between the exponents.
Wen performing the aggregation of spins to un-zoom from the original system, we have found that
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the partition function typically takes the form :
Z(N,K) = VK z(N' = N/p? K") (8.75)

hence the dimensionless free energy density follows

f(N,K) :g(K)+bidf(N/bd,K') and, in the limit of large N, f(K) :g(K)+bidf(K’) (8.76)

From this, we shall now see how the singularity of the free energy at a critical point are related to
the linearized RG-flow in the vicinity of this critical point. At the fixed point,

1K) = 8K + o F(Ke) &77)
zg(Kc)+;7 (g(Kc)erld <g(KC)+b1d(...)>> (8.78)

oo 1 n
:n;) <bd> g(K.). (8.79)

The series is convergent because 1/b% < 1. However let’s proceed the same way with the successive
derivatives of f(K) :

1 dK' ,

"(K) =8 (K) + 5 (K'). 8.80
1K) =8 (K)+ 25 f (K) (8.80)
At the fixed point,
1 dK’
/ / / .
f(Ke) = 8'(Ke)+ g g | S (Ko (8.81)
from which we extract again a series, with #, replaced by ;—d‘é—lg ‘K > #, because ‘fl—lg B > 1 since

the critical point is an unstable fixed point of the RG flow. This series might still be convergent,
but already less than the previous one. Proceeding further in the order of derivatives, the more

1 [ &’
» \ dK

th derivative is

n
dangerous term in the series for the n < ) , which for some finite n will lead
to a diverging series, hence a singularity of f(K). |

Altogether we see that when asking for the system to remain unchanged during the renormalization
process, what really matters is the singular part of the free energy, namely :

1
fsing(K) = ﬁﬁw’ng(l{l) (882)

This last expression shows how the Widom scaling hypothesis actually takes its root in the ideas of
the renormalization group.

Finally, recalling that the second derivative of f, with respect to 3, has the singularity of the heat
capacity characterized by the critical exponent @, one has fiie(K) ~ (K — K,)*>~%. Injecting this
expression in eq. 8.82 and linearizing K'(K) close to K., one finally obtains

dRy
dK

from which we derive, using eq.8.74 the so called hyper-scaling relation

2—a
. ) —pd: (8.83)

2—a=dv (8.84)
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which comes as a complement to the previous relations, we had already found

2—o=pB(5+1) (8.85)
y=B(5-1) (8.86)

Altogether, we have seen how the renormalization group ideas offer a paradigm for the scaling
properties of the singular part of the free energy, which in turn allow to reduce the number
of independent critical exponents. More importantly, we have seen how these ideas provide a
framework for the concept of universality and universality classes. We have also illustrated some
practical implementation of these ideas on very specific models. Identifying the RG-flow for a
given class of systems is in general very difficult. There are a number of techniques, taking place
either in real space or in the momentum space, for lattice models or field theories, including several
kind of controlled or un-controlled approximation. Exploring these techniques goes beyond the
scope of this course, but the general ideas expressed here are underlying all of them.
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It might be a good idea before reading this chapter to refresh your mind with reading again Chapter
2. At the end of that chapter, we had introduced the Hamiltonian dynamics for a classical system of
N particules (k= 1..N) in a physical space of dimension d, described by their positions q(k—1)d,.kd
and impulsions p(;_1)4, x4 In the phase space of dimension 2Nd.

The system is described by its Hamiltonian H({g;, p;}), that is its energy, and obeys the dynamics
prescribed by the Hamilton equations. For i € [1,dN] :

)
qi = I O.1)
JH
y = — 9.2
p 90 ©2)
Any observable A(r) = A({q;(t), pi(t) }) then evolves according to :
. L JA JA OJH JA OH; dA _
A= LG P, = Gy g g o = AL 9.3)

where the last notation is called the Poisson bracket. It is a linear differential operator and has all the
standard properties of such an object. In particular, one sees, taking A = H, that ‘2—7 =0; the total
energy is conserved. The dynamics in phase space is constrained to a manifold where conserved
quantities are fixed by the initial conditions. In the case of an Hamiltonian dynamics, the law of
conservation for the probability density, discussed in the proposition 2.2.1 simplifies and reads :

ap
5, = {H.p} O

which is called the Liouville equation. It expresses the fact that the volume in phase space is
conserved along a trajectory : there is no condensation of the density p.

In the first part of this book, we concentrated on the steady state of this equation, which happens
to be the uniform distribution, reduced to the manifold of constant conserved quantities, namely
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the equilibrium distribution in the micro-canonical ensemble. In the following we want to consider
out-of-equilibrium situations, where p ({g;, p;} ,¢) depends on time.

Proposition 9.0.1 — The entropy of the universe is conserved!. This seemingly unusual sta-
tement is very easy to proof. Consider the entropy of the probability distribution p({g;, p;},?) :

S() =~ [ Tdgidpip({ai.pi} 1) I (p ({gi.pi} 1) ©3)

and compute its derivative with respect to time, remembering that the Poison bracket behaves as a
first order derivative operator :

<~ [magap (?9’; +% 1np> 9.6)
— — [Tdgidpi {H.p}~ [ Tdgadp; {H.p}1np ©.7)
—— [Tidgidp: {H.p} + [ Tidaidpip (H.np) 9.8)
__ / Midgidp; {H,p} + / Midgidp: {H,p} 9.9)
=0 (9.10)

We see here that there is no issue with time reversibility of macroscopic system at the level of the
universe, namely the N isolated particles. The microscopic dynamics is reversible and there is no
macroscopic arrow of time !

Okay, but what is this story of entropy growing unless equilibrium is reached then ? The answer
resides in the fact that we never consider the whole universe, or a perfectly isolated system. To
proceed further we need to consider a subset of particles in interaction with the rest of the universe
and obtain an equation for the dynamics for the marginal distribution describing only this subset
of S < N particles. This is the goal of the so called BBGKY hierarchy from the names of the
gentlemen who worked on its derivation and applications : Bogolioubov, Born, Green, Kirkwood et
Yvon.

BBCGKY hierarchy

The so-called S-particles probability density is given by integrating out the degrees of freedom
corresponding to the other N — S particles, and assuming the symmetry by permutation of the
particles,

N! al
ps({q1, 1392, P23 335, ps} 1) = (N—S)'/ I1 dadpip({ai,pi} 1) .11
A A S|

Note that the S particles of interest do interact with the other N — S particles. The energy of the
system of § particles is therefore not conserved.

The first step is to separate the Hamiltonian describing the systems into three parts, one describing
the § particles, excluding their interaction with the N — S other particles, one describing the
N — § particles, excluding their interactions with the § particles of interest and one describing the
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interactions amongst the two populations :

H = Hs(qi, piri=1,..s ) + Hn—s(qis Pisi=s+1,.8 ) + H' (qisqjri=1, 5. j=s+1,.N ) (9.12)

with 9.13)
S N

=Y Y Viul||gi— i (9.14)
i=1 j=5+1

Therefore, one has

d
p ' / H dq,dpl / H dgidpi | {Hs,p} +{Hv-s,p}+{H'.p} (9.15)
i=S+1 S~ T Y
For the term , the variables involved in the integration and that involved in the differential

operator, symbolized by the Poisson brackets, are different; one can than exchange the order of the
integration and the derivation operators

{Hs,/ H dqidpip }z{Hs,ps} (9.16)
i=S+1

For the term | 2 | the variables of both operators are precisely the same. We thus deal with an integral
of the form

-/ 11

Considering that f cancels at infinity, we find that
=0 (9.18)

The term | 3 |requires a longer calculation, which can be found for instance in Statistics Physics of
Particles, Cambridge University Press, written by Mehran Kardar, and one obtains :

b d
[1 dadpi{Hy-s.p} = | du’r = ()~ f(a) 9.17)

i=S+1

Proposition 9.1.1 — Hierarchie BBGKY(Bogolioubov, Born, Green, Kirkwood et Yvon).

dps > IV (gi —gs+1) IPs+1
Ps _tn )
ot { S>p5}+i_1/dQS+ldpS+l aql apl

9.19)

This equation shows that the knowledge of the evolution of pg depends on the dynamics of pgs i,
hence the name hierarchy for this set of equations. In the present form such a hierarchy is not very
helpful, but is will set the base for successive approximations.

Dynamics of the one and two particles densities

Let’s start with the first equation (S = 1) of the above hierarchy :

2 OV (g1 —q2) 9
DLy = [ dqzdpzwal’f 9.20)
Ay B,
. . 8 aUext a P1 a
with A, = [81‘ 50 ot maa| P 9.21)
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All terms present in A are homogeneous to an inverse time. In particular the second term describes
the spatial gradients of the external potential, which take place on a macroscopic length L :
&U ext 8 1 \%

9 1y 9.22
dq1 dpr w L ©22)

where 7y is an extrinsic timescale, describing the time it takes for a particle with velocity v to probe
the gradient of the external potential.

Let’s move to the second equation (S = 2) of the hierarchy :

Ip; _ WV(g—q) d  IV(g—qs) I
at {H27p2} - /dq3dp3 |: aql 8[7] + aqz 8[)2 3 (923)
Ay B,
A= |2 Ve 0 OUew 9 p1 9  p2 d Vig—q) (3 _ 3)
> o dq1 dp1 dqy dpa mdqy  m I dqi ap1 9Ip» P2

1/t 1/t 1/ Teo
(9.24)

In the term A;, we recover two terms corresponding to the same timescale 7y;. We also notice
the presence of a new characteristic time, which involves the interaction potential. This time,
Teotl = Lint /v, 1s the collision time, namely the typical time during which two particles are within
their interaction range /;,,;. For weak interactions such as Van der Waals or Lenard-Jones interactions,
the range of which /;,; ~ 10~ "%, this collision time is often the shortest timescale to consider.

We finally notice the presence of a similar collision term in the terms B; and B;, from which we
identify a third characteristic time. The integrals By and B, are non zero, only within the typical

interaction volume l?m. The ratio p3/p, and p,/p; are of order N times to the probability of finding

a particle per unit volume; it is thus the particle density. Hence, here for B :

1 B 1 / 1 I
— ~ 2~ — [ dgidp;ps ~ p (9.25)
Tx P2 [%) p Teoll Teoll

These three characteristic times 7y = %, Teoll = 1'7’” and 7, = L — 1 \where 0 =2, is called the

v novy’ int
cross section and [, is called the mean free path, and their relative magnitudes are at the root of the

approximations done in the kinetic theory. Two standard approximation schemes are as follows :

— For low density fluids, gases, of particles with short range interactions % = nl?m < 1,
applying the separation of time scales to the above equations leads to the Boltzmann equation.

— For systems with long range interaction, % > 1 and one obtains the Vlasov equation.

In both cases 7y is considered to be larger than the two other intrinsic times.

Boltzmnann Equation

For the equation governing the dynamics of p;, the condition % < 1 allows us to neglect the right
hand side of the equation. In other words p, evolves as if any two pairs of particles is isolated from
the rest of the system. The left hand side A; of this equation contains the two time scales Ty and T..y;.
The shortest one characterizes the relaxation of p, on the duration of a collision : after the collision,
and outside the interaction range L;,,, the particles involved in a collision become independent and
P2(q1, p1,q2, p2) relaxes towards p; (g1, p1)pP1(q2, p2). Then on the longer timescale 7y, which is
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also the time scale of the relaxation of p; the system relaxes to the true steady state, compatible
with the external potential (see fig. (9.1)

To deal with the right hand side B; of the first equation of the hierarchy, we need to know p, during
this intermediate pseudo steady state, we just described. I this regime, one can neglect % and the
terms of order 1/7y in the left hand side A; of the second equation of the hierarchy. Also, one can
change the variables from (g1,g2) to that of the center of mass Q = (g1 + ¢2)/2 and the relative
position ¢ = (q; — ¢2) and realize, as one would expect, that the slow dynamics corresponds to
that of the center of mass, and the fast dg/narmcs to that of the relative position of the particles.

Therefore p 2 << and a’; ; ~ 9q1 ~ . As aresult:
oV (g — 0 0 — 0
(1 —q2) ( 3 > py = <P1 P2> Ipx 9.26)
dq1 dp1 9Ip> m dq

This equation describes how p; is constrained along the trajectories that describe the collision
between two particles.

Substituting into the right hand side B; of the first equation of the hierarchy, one obtains

api / V(g1 —q2) (9132 aPz>
Hi, dgrdp, 2L 9420 (OF2  9F2 9.27
o —{Hy,p1} = [ dg2dp> a0 ap1 9ps (9.27)
o\ 9
:/dqdpz<p2 ”l)apz(ql,pl,q,pz,t) (9.28)
m q

Remember that all g; and p; are vectors. The integrand in this last equation is a derivative of py,
with respect to g along the direction of relative motion p = p, — p;. The convenient system of
coordinate for ¢ is illustrated on fig : (9.2) : a is the component of ¢ parallel to p, — p; (a <0
before the collision and a > 0 after the collision) and b, the so-called impact vector lies in the plane
perpendicular to the collision axis, so that dg = dad’b.

Therefore integrating along a, one finds

~{H,p1} = [ dbap

‘[PZ(QI p1.p.q" 1) —pa(qr,p1,p.q 1)) (9.29)

where g~ = (a~,b~ ) and g = (at,b™) denote the relative position before and after the collision.
Since p, varies significantly only over the interaction range, we shall consider that the collision is

A
P2 P

T('()II Tu d

FIGURE 9.1 — Relaxation of the densities p; and p; : p; relaxes on 7y the timescale set by the
external potential, while p, relaxes in two steps, a fast one, on the collision time 7,,;;, towards the
factorized distribution p; * p; and a slow one, slaved to the dynamics of p;.
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FIGURE 9.2 — Collision kinematics

ponctual and assimilate a~ and a*, which amounts to perform some coarse graining in space that
ignore variations on scale smaller than /;,,,. While it is legitimate to assume that the particles are
uncorrellated before the collision, because of their very different chaotic histories, (the molecular
chaos hypothesis) this cannot be true after the collision : the collision itself does create some
correlations.

The trick is to relate the density p, after the collision to the one before the collision, via the
equations governing the collision : indeed any configuration (g1, p1,42, p2) of the two particles
following the collision must come from a precise configuration (¢}, p', g5, p) before the collision.
Hence p2(q1,p1,p,9") = p2(q}, P}, P'.q~ ), where the configuration (¢}, p},p’,q~) is such that it
produces (g1, p1,p,q") via the collision. Of course the prime quantities are complicated functions
of the non prime quantities resulting from the integration of the equation of motion backward in
time during the collision. But the counterpart of it is that, now, all densities are evaluated before
the collision, where the two body probability density can be assumed to factorize, following the
Molecular Chaos Hypothesis.

Accordingly we finally obtain the closed form Bolzmann equation for p; (g1, p1) :

Proposition 9.3.1 — Boltzmann Equation.

ap

W—{thl]’:/dpzdzb p2—Pi

m

[P1(q1,P1,0)P1(g1,P5,1) — Pi (g1, p1,0)P1 (g1, p2,t)]
(9.30)

The Boltzmann equation has a rather simple interpretation. The left hand side of the equation
describes the evolution of the density for a single particle in an external potential. The right hand
side describes how the probability of finding a particle of momentum p; at g; changes because
of a collision with a particle of momentum p, at this same ¢;. The second term preceded with a
minus sign, integrates all collisions, starting with a momentum p, that will be turned into some
other momentum ; and the first term integrates all collisions, starting with any momentum, which
produce a momentum p;.

Proposition 9.3.2 — The case of elastic collisions : a useful property inherited from symme-
try considerations. Consider the right hand side of the Boltzmann equation, multiply it by a
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function ®(p;) and integrate it over p :

@)= [api [ dp2d [0!95 — p1pa] ®(p1) ©931)
=& [m [apsa| PP [piph— pipa] (@) +8(p2)) — (@(p1) + B(p1)]
9.32)

where one should not confuse the notations : from now on p; = pi(q1, p1,¢) and p2 = p1(q1, p2,t)

P2— D1

The proof consist in using the two following symmetries of Q : first exchanging the indices 1
and 2, Q remains unchanged ; second if the collision is elastic, the Jacobian of the transformation
(pl’,p2') <> (p1,p2) is one, and Q is antisymmetric under this change of variable.

H Theorem
Let’s come back to our initial motivation and consider now the entropy of the one-particle distribu-
tion

S= —/dmdm pi(q1,p1,1)In(p1(q1, p1,1)) (9.33)

Boltzmann actually introduced H = -S as the function of interest, hence the name of the H-theorem,
which states that If p; s dynamics obey the Boltzmann equation then 4 G 5 > 0. The proof goes has
follows :

/dqldpl 1 —l—lnp1) (9.34)
/ dqldm P inp, (9.35)
/ dgvdpy {Hy,p1} — / dgidp) / dprd®| 2P [plpt —pipa] npy  (9.36)

P2 — D1 pP1P2
= / dqidpidpad®h | === [p{p3 — p1p2] In < o p£> ©.37)

The second line derives from the fact that [dgd 2 ap L= % = % = 0. The third line is obtained
by applying the Boltzmann equation. [dqdp {Hj, p1} = 0 as can be shown by successive integration
by parts. And the last line is obtained by applying eq. (9.32) to the case ®(p;) = In(p1(q1,p1,1))-

Finally, given that V(X,Y) € R™2, (X — Y)In(¥) <0, we find that £ > 0.

How is it that starting with a reversible dynamics, we end up with an irreversible one, marked
by a clear arrow of time ? Reconciling the reversibility of the microscopic laws of physics with
the observed irreversibility of the macroscopic physics has been a matter of long debates. At the
level of first principles, there is no reason to be so surprised : describing the world, retaining
only macroscopic degrees of freedom is clearly an approximation. As such, there is no reason
why it should retain all fundamental properties from the microscopic dynamics. As a matter of
fact, the key to the irreversibility of the Boltzmann equation resides in the physically motivated
approximation, we made to derive it. The troncature of the BBGKY hierarchy does not break the
time reversibility itself. A first crucial step comes later when we have made the molecular chaos
hypothesis before and not after the collision. This assumption, while being very reasonable, does
break the time reversibility. A second step not less important, is the spatial and temporal coarse
graining made when assuming the collision to be local and instantaneous. Doing so, we have
introduces a resolution level below which we loose information, hence loosing time reversibility.
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Conserved quantities and Hydrodynamics

The main success of kinetic theory is that it allows for a systematic derivation of the hydrodynamics
equations, namely the equation describing the large scales motion of fluids. There are several way
of proceeding, and we shall concentrate on the one which follow from the Boltzmann equation.

The central idea is to consider the dynamics of conserved quantities ¥, which are left unchanged by
the two-body collisions :

x(q,p1,t) + x(q,p2,t) = x(q,P},1) + x(q,P).1) (9.38)

For such quantities, we have (eq. 9.32) that Qx| =

Multiplying by x (g, p,t), and applying the integral operator [ dp on both sides of the Boltzmann
equation then simply leads to

d pad dUJ B
Jar [ sy 53 =0 o
LP9 U9 S Y U
/d {{ moq g ap] (P12) =P [8t +m&q dq 8px =0 (©-40)

There are six terms ; the third one being zero because it is a complete derivative. Then introducing
the spatial fields

t):/dppl(%l’vt) (9.41)
1
W) = s [dppr(apaxia.p) 042
we find
dn(y) 0 p oy pox oU /dy
ot +87q( <E%>> <8t> n<mo7q>jL 8q<8 > 0 ©.43)

The conservation of particles is obtained from setting ¥ = 1. The three last terms are null, hence

dn  dnu ) P
ot 5, =0 with u:<%> (9.44)

The conservation of momentum is obtained from setting ¥ = £ — u. After some lines of algebra,
one obtains
du 8u 10U 1 do

5, (9q “mdq mnda with oc=mn{c®c) (9.45)

Identifying o with the stress tensor, one recognizes the two Navier-Stokes equations.

One sees that solving the hydrodynamics equations for n and u requires a closed form expression
for . This one can also been obtain from the knowledge of p;, solution of the Boltzmann equation.
There are however further assumptions to consider, including the so-called local equilibrium, which
we will not address in this course. The interested reader can go and look for these developments in
the book Statistical Physics of Particles, already quoted above.



Equilibrium statistical physics gives the probability to observe a system in a given microscopic
state. Here, we ask: how does a system evolve from a particular state towards the equilibrium
probability distribution? Or, alternatively, what is the correlation between the microscopic state at
time 7 and the microscopic state at a later time ¢'?

To answer these questions, we need to introduce a dynamics for the system, which is a law that
rules its evolution. The dynamics should of course be compatible with the equilibrium probability
distribution. In particular, it cannot be deterministic, in which case the probability distribution
would be concentrated on a single state. The dynamics should thus contain a random term: it should
be stochastic. Then, to a stochastic dynamics for the state of a system x(¢) can be associated a
deterministic dynamics for the probability density p(x,7).

How can a stochastic dynamics emerge for systems with a deterministic dynamics, such as Newto-
nian dynamics or the Liouville equation? In principle, we can write down a deterministic dynamics
for all the degrees of freedom of the system, which is often impossible. A stochatic dynamics
naturally appears if we are interested in only a part of the system, such as the hydrodynamic
variables of a fluid, or the position of a colloid in a fluid. In these cases, the “hidden” part of the
system generates noise (but not only noise, as we shall see), on the observed part.

Here, we do not derive stochastic equations from deterministic dynamics, but we write directly
simple stochastic dynamics, and we analyse their behaviour. We then put constraints on these
equations by enforcing the compatibility with equilibrium statistical physics. The dynamic approach
allows us to discuss concepts such as microscopic reversibility, ergodicity, or free energy.






Stochastic process

We introduce the simplest possible model to describe, for instance, the motion of a speck of dust
(the particle) in the air. At time ¢ = 0, the particle is at the origin: xo = 0. The particle moves on a
lattice at discrete times: its position at time ¢ € N is given by x; € Z (Fig. 11.1). At each time, the
particle moves by one unit to the left or to the right:

Xi+1 = X + 8¢, (11.1)

where the jump s; is — 1 with probability 1/2 and 1 with probability 1/2. The jumps are independent.
This is the first stochastic equation that we write.

We can write

t—1
Xx=Y s, (11.2)
t'=0

Figure 11.1 — Marche a aléatoire a temps discret sur Z
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which allows us to compute the mean and the variance of x;:

t—1

(i)=Y (s1) =0 (11.3)

t'=0

(xf) = < (:gsﬂ>2> (11.4)

t—1
= Z Stlst// (115)
11"=0

= ) (sose) (11.6)

and

' 1"=0
t—1
=Y & (11.7)
' ,1"=0
—=1. (11.8)

We have used that (s?) = 1 and (s;s,/) = 0if t #¢'.

Probability distribution

Exact solution, long-time limit

The position x; of the particle describes the microscopic state of the system. As the state of the
system is random, we may be interested at the probability p,, to find the particle at a position x at
time ¢, i.e., to find the system in a given state. We call p,; the probabilistic state of the system.

For the random walk on Z, the probability distribution is given by the binomial law:

Lt ) .
o= 2 (xer,> if x4 is even, (11.9)

0 if x+1 is odd.

The condition on the parity of x+¢ comes from the fact that the particle cannot be at an odd position
after an even number of steps.

From the central limit theorem, the normalised position y, = x, /+/f converges in distribution to the
standard normal distribution: its density satisfies

Fw) = L, (11.10)

- /21

which can be written in a non rigorous way

e/ (11.11)

Pxt =
R CINGY 7

Evolution

In the following, we will be more interested in the evolution of the probability distribution, as it is
easier to generalise to other systems. To be in x at time ¢ + 1, the particle should have been in x — 1
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or x+ 1 at time 7, and the jump towards x has a probability 1/2, hence

Prit1 = W (11.12)

This is the first of the evolution equations for a probability distribution that we will see. We make a
few remarks that remain true for other evolution equations. First, we write the difference between
the distribution at time 7 4 1 and the distribution at time ¢:

1 1
Pxi+1 — Pxt = pr—l.,t — Pxy T+ 5Px+1,t- (11.13)

This is the “master equation” of the problem.

The master equation is linear and can be written

Pratl—Pxa = Y, Mypy,, (11.14)
YEZ

where M is a matrix (of infinite size), here given by

1 1
My = 581y = 8yt 58001, (11.15)

The probability is conserved (Y, p.; = 1 V¢) for every initial probability distribution, which implies

Y My =o0. (11.16)

XEZL

With this matrix formulation, we can write the probability distribution at time ¢ as

pr =Y, (1+M)\ pro, (11.17)
YEZL

where 1 is the identity matrix.

Stationnary solution

Last, we should check that the equilibrium distribution of our dynamics is given by the Gibbs-
Boltzmann equilibrium distribution. Unfortunately, there is no equilibrium distribution for a random
walk where all the positions are equiprobable. The condition for a distribution to be stationnary is

vx, Y Myp;=0. (11.18)
YEZ

It is easy to check that there is no normalized stationnary distribution for the operator (11.15)
associated to the random walk.

The probability conservation (11.16) means that the vector U, the components of which are all
equal to one, is a left eigenvector for M with eigenvalue zero: U'M = 0, or M'U = 0. Since M and
M" have the same eigenvalues, there exists an eigenvector p* of M with eigenvalue zero. If p* can
be normalized, it is the stationnary distribution.
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12.1.1

12.1.2

Examples: continuous time lattice random walks

Random walk on Z

We will see that it is easier to work with a continuous time, where the master equation (11.13)
becomes a differential equation. We still consider a random walk on Z, but now the particle can
jump to the right or to the left with a probability 67/2 in a time interval ot (Fig. 12.1). The master
equation reads now

ot

5
pult+81) = (1= 80)pa(t) + ?tpx_1(t) + 2P 0), a1

which becomes a differential equation in the limit 6 — 0:

1 1
Pa(t) = pr—l(t) —pa(t) + 7Pt (1), (12.2)
=Y Mqyp, (1), (12.3)

y

where the operator M is still given by (11.15). The probability distribution at time ¢ can be written
from the probability distribution at time 0:

p(t) =e™p(0), (12.4)

where p(t) is seen as a vector with components p,(r).

Random walk on a circle

Let’s now move to a process that admits a stationnary solution. We consider N sites disposed on a
circle, which amounts to identify the sites N and O (this can be seen as a random walk on Z/NZ,
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S/ Ot
2.
¥ \/

N N NN NN AN NN YN NN (N N N R

At

Figure 12.1 — Continuous time random walk on Z.

6 1

Figure 12.2 — Symmetric oriented continuous time random walk on a circle.

Fig. 12.2). The master equation is still given by (12.3), with the operator given by (11.15) where
we have remplaced —1 — N — 1 and N — 0. For instance, for N = 6, this matrix reads

-1 1/2 0 0 0 1/2
12 =1 12 0 0 0
0 1/2 -1 1/2 0 0
0 0 1/2 -1 1/2 0
0o 0 0 1/2 -1 1/2
12 0 0 0 1/2 —1

M= (12.5)

We can check that the sum of the coefficients over each column is zero.

It is easy to check that the uniform distribution, p, = 1/N VX, is a stationnary distribution. This
distribution corresponds to the Gibbs-Boltzmann equilibrium distribution for a uniform energy on
the N sites of the circle.

12.1.3 Oriented random walk on a circle

We consider N sites disposed on a circle, but now the particle can only hop “to the right” (from
site x to site x+ 1, or from site N — 1 to site 0), with probability ot during the time interval 8¢
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0 (Sr/z

O\

6 1

Figure 12.3 — Oriented continuous time random walk on a circle.

(Fig. 12.3). The associated matrix is now, for N = 6,

-1 0 0 0 0 1
I -1 0 0 0 0
0 1 -1 0 0 0

M=10o 0o 1 -1 0 o (126)
0 0 0 1 -1 0
o 0 0 0 1 -1

The uniform distribution is still stationnary for this dynamics, but, as we will see, the situation is
different from the symmetric random walk.

12.2 Probability current, stationnary state and equilibrium state

Here we consider the general situation for a discrete system with a continous time. The possible
states for a system are identified by i € {1,...,N} and the system can go from state i to state j with
a transition rate kj.;: if the system is in state i at time #, it will be in state j 7 i at time ¢ + & with
probability k;.;6t (Fig. 12.4). The master equation still takes the form (12.3), and the coefficients
of the matrix M are given by the transition rates:

M;; = ki . 12.7)
In order to satisfy the probability conservation (11.16), we define

kici=— ijei- (12.8)
JFi

The right hand side represents the “leak™ from i to other possible states.

When the system has the probability distribution p;, we define the probability current from i to j by

Jjci=kjcipi—kijpj- (12.9)
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Figure 12.4 — General system with discrete states.

The first term corresponds to the transition from i to j, and the second term to the opposite transition,
from j to i. We can write

pi=Y ki jpj= Y kicjpj+kicipi (12.10)
J J#i
:Zkiejpj_zkjeipi (12.11)
J#i J#i
=Y i) (12.12)
J#i

In particular, in a stationnary state, for any state i, },;.; ji; = 0, the probability current towards
the site i is zero.

Let’s compute the probability current for the two random walks on a circle for the uniform

distribution, which is stationnary. For the symmetric walk, the current from site O to state 1 is

J10 = kiopo — ko—1p1 = 0. (12.13)

For the oriented walk, we have instead
J1e0 =ki—opo —ko—1p1 = 1/N. (12.14)

The nature of the stationnary state depends on the process: for the symmetric walk, the probability
current vanishes, while there is a current “to the right” for the oriented walk. As the equations
ruling the motion of atoms and molecules, such as the Newton equation, are reversible, the system
is said to be at equilibrium only if the probability current vanishes. Otherwise we just say that the
system is in a stationnary state.

12.3 Random walk in an energy landscape, detailed balance

Up to now, we have only considered dynamics with a uniform stationnary distribution. Now we
look at the conditions under which the equilibrium distribution is the Boltzmann distribution for
energies (E;) for a system that can exchange energy with a reservoir:

1 E;
pii= ~ XP (—T> : (12.15)
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connexe 2 équations de Boltzmann

avec des prefacteurs ;é

Figure 12.5 — Connected graph (left) and non connected graph (right).

where the Boltzmann constant has been set to one and Z is the canonical partition function,
Z =Y ,exp(—E;/T). Using the equilibrium distribution in the definition (12.9) of the probability
current, and assuming that the system is at equilibrium (j;._; Vi, j), we get the detailed balance
condition:

kjcie BT =k je BT, (12.16)

We note that the detailed balance condition is satisfied if the transition rates are zero: k. ; = kj; =
0. This is not a problem, but in order to be able to reach equilibrium, the space of states should
be connected, namely it should be possible to go from i to j for all i and j, possible through other
states (Fig:connexe). This is the ergodic hypothesis, which states that the system is able to explore
all the possible states (or, for a continuous phase space, that the trajectory of the system is dense in
the phase space). For instance, the random walks on Z or on a circle are connected.

Infinitely many dynamics satisfy the detailed balance condition (12.16). In order to define a
dynamics, we start by defining a graph of states, which represents the states that are directly
connected together: g;; = 1 if the states are connected (e.g., ki ; # 0 and k. ; # 0) and g;; =0
otherwise. Then, we define the rates for the connected states. Two common choices are

— Glauber dynamics:

E:
ki j = gijexp (—T> (12.17)

Here the transition rate depends only on the final state of the transition.
— Metropolis dynamics:

. 8ij SiE; < E;,
ki ;= . 12.18
< { girexp(—[Ei—Ej)/T) siE>E;. (12:18)
Here the transition rate depends on the energy difference.

These dynamics can be used to

— Look for the minimum of a function without being trapped in local minima; this is the
“simulated annealing” method.

— Explore a complex phase space in order to compute thermodynamic averages, e.g., for the
Ising model.
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Evolution of the free energy
The average energy in the probabilistic state p; is

U=) piE;, (12.19)
i

and the entropy is given by

S =) pilog(pi). (12.20)

The free energy is thus

F=U-TS=Y pilE+Tlog(p:). (12.21)

Let’s compute the evolution of the free energy

F =Y [E+Tlog(p;) +T)pi, (12.22)
i
=Y [Ei+Tlog(p) +T1Y. jic i, (12.23)
i J#i
= Z ([Ea, +Tlog(pay) + Tl jaya, + [Ea, + T10g(Pay) + Tjare-ar) » (12.24)
ace
= Y [Eq +T10g(pa,) = Eay = T10g(Par)] jay s (12.25)
acd

where &7 is the set of the edges of the graph of connected states, a € 7 is an edge and a; and a;
are the ends of the edge a. The probability current on the edge a, between the states (or nodes) a;
and ay, 1S

jmeaz - ka1<—a2pa2 - kazealpal - ka <eEaz/Tpaz - eEul/Tpal) ) (1226)
where
ko =eFalTky 0 =e Fal/Thy o (12.27)

from the detailed balance condition (12.16). Using this expression in the free energy evolution
(12.25), we get

F=—Y ki[Ea +T108(pa,) — Ea, — Tlog(pay)] [eEal/Tpal —eEnlTp, ] (12.28)
ace/

Introducing the “local free energy”
fi = Ei+Tlog(p:), (12.29)

we can write the evolution of free energy as
F== ¥ kalfur = fur) (/7 = e/T) <o0. (12:30)
acd

The inequality comes from the fact that the exponential is an increasing function: for an increasing
function f, (x —y) x [f(x) — f(y)] > 0.

The free energy decreases with time: it is a Lyapunov function of the master equation (12.3). Its
existence garanties that the thermodynamic equilibrium is stable.
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We introduce a stochastic equation of motion in continuous time and space.

White noise

We want to write a continous counterpart of the random walk introduced in Sec. 11.1. The properties
of the jumps s, are: (s,) = 0 and (s;sy) = &y, where 0 is the Kronecker symbol. The white noise is
a continuous version of these discrete jumps: it is a random function 7(¢) satisfying

(n(#)) =0, (13.1)
(nen()) =@ —1), (13.2)

where now 9 is the Dirac distribution. The probability distribution of 1(¢) is usually assumed to
be Gaussian, but we will not use it here. The white noise is termed “white” because its spectrum,
i.e., the Fourier transform of its correlation (13.2), is uniform, as the white light spectrum. For a
different correlation function, the noise would be called “colored”.

The stochastic process defined as

#(0)=n(0) (13

is the Wiener process, or Brownian motion. In order to illustrate the correlation function (13.2),
let’s compute the variance of x(¢) for a process starting at the origin, x(0) = 0:

(x(1)*) = <(/Otn(t’)dt’)2>, (13.4)

_ /0 /O @ )n(")de'de", (13.5)

! t
= /0 /O §(f' —1")dr'ar”, (13.6)
_, (13.7)
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Langevin equation
Definition

Now that we have defined “mathematically” the white noise, we see how to incorporate it in an
equation of motion accounting for the inertia of the considered particle and an external force. First,
let’s discuss the physical meaning of the white noise. Consider a small particle (a colloid) in a
liquid. Momentum is exchanged during the collisions of the liquid molecules with the colloid, and
the colloid moves in a straight line between two collisions. Assuming that the momentum transfer
is random, and that the time between two collisions is very short, we can model the collisions as a
“noise” to add in the equation of motion of the colloid, which we write

mi(t) = —Ax(t) + f(x(t),t) +an(z). (13.8)

A is a friction coefficient, f(x,¢) is an external force depending on space and time and a is a
coefficient setting the amplitude of the noise. The correlation function of the noise is still given by
(13.2). This is the Langevin equation.

The Langevin equation seems very different from the Brownian motion (13.3) because it is of
second order in time. We will see that this difference does not affect fundamentally the dynamics
of the particle.

Mean squared displacement without external force

Without external force, the Langevin equation (13.8) is linear, and is solved by

1 Py
x(1) = x(0) + ¢ (1 - e*f/f) #(0) + % / (1 - e*T) n(dr, (13.9)
Jo
where we have defined the characteristic damping time
m
- 13.10
T=7 (13.10)

We compute, as before, the mean squared displacement. Setting x(0) = 0, since the initial velocity
v(0) is independent of the noise during the interval [0,z], we find

! o

(x(?) =2 (1 e—f/f)z ((0)%) + ;’;/Ot /Ot (1-e%) (1) (" arar

(13.11)
2 2
_ 2 Lt - ()2 a o Lt E a2t
=7 (1—e7/7) (20 + 55 =27 (1—7/7) +5 (1=e727) | (1312)
From this heavy expression we can identify two regimes:
2 )2\ 42
(x(0)) = (x(0)°)17, (13.13)
2 a*
(x(r) >I;T = 2Dt. (13.14)

At short time (# < 7), the motion is ballistic: the particle moves in a straight line at constant speed
v(0). At long time (r > 7), the motion is diffusive: the initial velocity is damped, the motion is due
to the noise and takes the same form as for the Brownian motion (see (13.7)). We have defined the
diffusion coefficient D = a®/(2A?); it is more convenient to use than a, and we will use it instead of
a from now on. Note that the diffusion coefficient does not depend on the mass of the particle.
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Small inertia limit

We have seen in the previous paragraph that the inertia of the particle has effects only for observation
times smaller than the damping time T = m/A. For small particles, this time is not accessible to
observation and inertia can be neglected in the odel. The Langevin equation (13.8) becomes

i(t) = %f(x(t),t)—k\/ZiDn(t), (13.15)

this is the overdamped Langevin equation.

Without external force, the solution (13.9) of the Langevin equation becomes in the overdamped
regime

x(t) :x(0)+¢25/()tn(z’)dr’, (13.16)

and the mean squared displacement (13.12) is now

(x(t)*) = 2Dr. (13.17)
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Derivation

We consider a motion described by the overdamped Langevin equation (13.15) and we look for
an equation for the probability density p(x,7). For a given function g(x), we are interested in the
average

(e(x(1))) = [ gpplr.)dx. (14.1)

We compute the evolution of this average by two different routes. First, we write it with the
evolution of the probability density:

d

St = [ explx.nas (142

Second, we use the Langevin equation:

(g(x(t + 61))) = <g <x(t) 4+ (XS{)’[ ) 5t+v/3D /t O ar +0(5t)> > , (143)
e + <g'(x(t)) [f (ng)’t) 5t+/2D /t t+6[n(t’)dt’} > (14.4)

146t 2
+<;g"(x(t)) [f(x(t)’t 5r+x/25/ ’ n(t’)dt'] >—|—o(5t) (14.5)

A

= o) + (¢ )T ) 814 (4 0) % 2001+ o)
(14.6)

We have used the following properties:
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— the noise on the interval [¢,7 + 67| is independent of the position at time ¢ (this is the /76
convention, opposed to the Stratonovich convention, where the noise and the position are

correlated),
— the average of the noise is zero, and its correlation is given by (13.2).
We deduce
d 1 / "
3 (8(x0)) = = (& (x(0) £ (x(1), 1)) + D (" (x(1))) (14.7)
1
— [ | 3w + 0" pxnar, (148
1 /

= / g(x) [Afp+Dp’} (x,1)dx. (14.9)

We have integrated by parts to get the last line. The equations (14.2) and (14.9) hold for any
function g(x), hence we can identify the evolution of the probability distribution:

plx,t) = — pr —Dp’} (x,1). (14.10)

The generalisation to any dimension of space is straightforward:

1
p(x,t)=—-V. {Af(x,t)p(x,t) —DVp(x,t)} . (14.11)
This is the Fokker-Planck equation.
We note that the probability variation is written as the divergence of a probability current (or flux):
p(x,t):—V-j(x,t), (1412)
1
j(xvt)ZXf(xvt)p(xvt)_Dvp(xvt)' (1413)

The probability current is the sum of a convective term and a diffusive term.

Equilibrium

We look for the equilibrium solution of the Fokker-Planck equation when the force derives from a
potential:

flx)=-=VV(x). (14.14)
We have seen that the probability current must vanish at equilibrium: we thus look for a probability
distribution p®(x) that satisfies

Jx, 1) = —%peq(x)VV(x) —DVp®i(x) =0. (14.15)

Dividing by p®(x), we get

Viog(p®(x)) = —ﬁVV(x), (14.16)

hence

P00 = Lexp <_V(x)> . (14.17)
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Z is a normalisation constant.

This equilibrium distribution is the Boltzman distribution, Z~!exp(—V (x)/(kgT)), if

_ kT
D= (14.18)

This is the Einstein relation. It is a fluctuation-dissipation relation: it relates the amplitude of
the fluctuations (given by the diffusion coefficient D) and the dissipation (given by the friction
coefficient A).

Evolution of the free energy

The free energy of a probability distribution p(x) is given as in the discrete case (see (12.21)) by

F=U-TS— / %) + Tlog(p(x))] p(x)dx. (14.19)

Let’s compute the evolution of the free energy if the probability density follows the Fokker-Planck
equation (we come back to a space of dimension 1):

. d

fi= g ( [0+ oot ). (14.20)
—/pxt %) + Tlog(p(x,1)) + T] dx, (14.21)
-/ [Avfpwp'} V4 Tlog(p) + T)dx (14.22)
—-/ <1vfp+Dp'> (v/””/) dx (14.23)

A p
7N\ 2
:7/2 (VI+TP> dx (14.24)
A p

<0. (14.25)

As in the discrete case, the free energy decreases with the time. The equality in the inequality above
is reached when the current vanishes, i.e., at equilibrium.






15.1

15.2

Introduction

The escape from a meta-stable state due to a thermally activated event is ubiquitous. In chemistry,
it can be associated to a chemical reaction. In this case, the rate of escape, or transition rate, is
proportional to the reaction rate k. Arrhenius noted in 1889 that the rate of many chemical reactions
depends on temperature as

k ~ exp <—lf;> , (15.1)

where E, is the activation energy. A consistent model to explain this dependence was introduced
by Kramers in 1940: he describes the state of the system with a single continuous variable which
undergoes a Brownian motion in a potential.

Here, we develop this approach: we consider a “particle” with an overdamped motion in a potential
with two (meta)stable states (Fig. 15.1(a)). The density of probability of finding the particle at
position x at time ¢, p(x,) follows the Fokker-Planck equation. We present different methods to
derive the transition rate from one metastable state to the other.

The activated hopping across a potential barrier is analogous to tunnelling in quantum mechanics,
which plays a role at smaller scales (e.g. in radioactive decay).

Kramers computation

The approach of Kramers is to compute the escape rate from a metastable state, “protected” by an
energy barrier. The escape rate is computed using the “flux over population” method: we look for
the stationnary density p(x), with a uniform flux J, with an absorbing point a on the other side of
the energy barrier. The rate k is then defined as the flux J divided by the population [“_ p(x)dx.
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The flux is given by

1

J == U'(0)p(x) = Dp'(x) = =D [u (¥)p(x) + p(x)] = —De "0, [e“(")p(X)} ., (15.2)

where we used Einstein’s relation, D = T /A and introduced the reduced potential u(x) = U (x)/T.
The absorbing barrier at a sets

pla) =0. (15.3)
Integrating Eq. (15.2) between x and a, we get

p(x) = Ze ") / ey (15.4)

p(x) is not a probability density since it is not normalized; its integral is the population

n— / p(x)dx:% / / () =40 4/, (15.5)

The transition rate is then given by

a a f -1
=Y _p </ / e”(x)_”(x)dx’dx> . (15.6)
n —oo JX

When the temperature is small enough compared the barrier height, the integral appearing in
Eq. (15.6) can be computed with the saddle-point method. Its main contribution comes from
X = Xmin (Iocal minimum of the potential—well) and x’ = x;ax (local maximum of the potential—
barrier). Approximating the potential by parabolas close to these points, we get

/ ’ / " )= gy 21 g (imax) ~4(xmin), (15.7)
—eoJX \/ |t (Xinin )" (Xmax) |

Hence, the transition rate is

K ~ \/‘ u” (Xmin)UN (-xmaX) | - U(Xmax);U(xmin)
N 2wA

(15.8)

We recover the temperature dependence observed by Arrhenius, Eq. (15.1).

Smallest eigenvalue

Here, we look at the transition rates between the two wells of a double well potential. For this
purpose, we compute the lowest non-vanishing eigenvalue of the Fokker-Planck operator and the
corresponding eigenfunction. We show that there are intermediate time scales where the system
can be mapped on a system with two states, and the dynamics described by transition rates between
these two states.

This approach emphasizes the role of the spectrum of the matrix, or operator, entering in any master
equation.
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Figure 15.1 — (a) Reduced potential, (b) eigenvectors corresponding to the eigenvalues O (pg) and
u (p1), (¢) Decomposition of the first two eigenvectors in densities localized in the left (p_) and
right (p) wells, (d) eigenvalues of the Fokker-Planck operator .Z.
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Fokker-Planck operator, definition and properties
First, we write the Fokker-Planck equation as
atp(xat) :*Dgp(xat)a (15.9)

where . is the Fokker-Planck operator,
Lp(x) = = (x)p(x) + p'(x)] = — 0, [e*”()‘)%{ (e”()‘)p(x)ﬂ . (15.10)

We are interested in the eigenvalues of the operator .Z. We like self-adjoint operators since their
eigenvalues are real. This is the case for .Z: it is self-adjoint for the scalar product

(f.0) = [ fgx)a, (15.11)
indeed,

(Lf.g)=— / A [e*“@)ax <e“(") f)} e @ g (x)dx (15.12)

— [ g, (e”(x) f(x)> X (e”(x)g(x)) dx (15.13)

_ (.20, (15.14)

Moreover, the operator .Z is positive, (-Z f, f) > 0 (from Eq. (15.13)), hence its eigenvalues are
positive. This was expected because the Fokker-Planck equation converges to the stationnary
solution.

The equilibrium Boltzmann distribution, po(x) = peq(x) = Z'e (), is the eigenvector of .#
associated to the eigenvalue 0. We are interested in the smallest non-vanishing eigenvalue u and its
associated eigenvector p;(x), £ p1 = Up;.

That the Fokker-Planck operator is self-adjoint implies that its eigenvectors associated to different
eigenvalues are orthogonal for the scalar product (15.11). Applied to the equilibrium distribution
po and to the eigenvector p, associated to the eigenvalue (,, > 0, it means that

0= (po,pu) = [ pulo)a. (15.15)

This property is also a consequence of probability conservation.

Mapping to the Schrédinger equation

The energy levels of a quantum particle in the one-dimensional potential Us(x) are obtained from
the Schrodinger equation

2
() + Us( ) = Ew(). (15.16)

Using the reduced potential ug(x) = 2mUs /h?, we arrive at the eigenvalue equation
—y"(x) +us(x)y(x) = uy(x). (15.17)

The eigenvalue equation for the Fokker-Planck equation is

Lf=—0o[e"o(e"f)] =uf. (15.18)
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Using f = e /2 v, this equation becomes
py = —e29, [e—“ax (e"/zw)} (15.19)
/
_ e, |:e—u/2 (w’ +L;w>] (15.20)
— s LQ _ uiﬂ
=-y + < T V. (15.21)

This is equivalent to the Schrodinger equation (15.17) in the potential

u u
Us = — — —

2 /!
4 2

(15.22)

The transformation (15.19) makes the operator self-adjoint for the scalar product (f,g) = [ f(x)g(x)dx,
which is the condition satisfied by the Hamiltonian in quantum mechanics.

This mapping between thermal (stochastic) and quantum systems makes a quantitative link between
the transition rate across an energy barrier and quantum tunnelling.

15.3.3 Smallest eigenvalue and eigenvector

The eigenvector p;(x) associated to the eigenvalue u satisfies

0 [e7Wa, (¢0pi(x))| = pp1 (x). (15.23)
We introduce y(x) = ™ p; (x) = p1(x)/po(x), which obeys

9, [e_”(") q/(x)} — pe "Wy (x). (15.24)
Integrating this relation between a and x gives

e @) v (a) — e v (x)=u /X e () w(x')dx, (15.25)
which also reads

Y () =y (a) [y (a (15.26)

Now, we integrate one more time this equation between a and x:
y(x) = yl(a) _|_e—“(”) w’(a)/ eu(xl)dx/ _ /.L/ / eu(ﬂ)—u(;ﬁ’)w(x//)dx//dx/' (15.27)

Since p; has a vanishing integral, it should vanish at some point; we choose a to be the point where
pi(a) =0, and thus y(a) = 0. The eigenvector p; is defined up to a constant, so that we can set
e “@y’(a) = 1. The previous equation now reads

W(x):/ eu(x’)dx/_‘u/ / eu(x’)fu(x”)w(x//)dx//dx/' (15.28)
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Since u is the smallest non-vanishing eigenvalue, we assume that it is small and use it as an
expansion parameter: we write Y = W'+ uy! +... with

v0(x) = / e dy (15.29)
/ / w0 (6 )dx" d’ (15.30)

/ / / u( )+ 4" 4 dt (15.31)

At order y, this leads to
y(x) = / {1 _ u/ / )+l ) g g | . (15.32)
Constraints on p; can be used to determine . The current associated to p; is proportional to

J&) ="y (x)=1-p / / e Ul gy gy (15.33)

This current should go to zero at infinity; this imposes that

oo X , 71
_ < / / e”<X>+u<X>dx’dx.> (15.34)

The expression should be the same when x — —oo, hence

/a /a efll(x)“ru(x,)dx/dx — /°<> /X efu(x)qtu(x’)dx/dx' (15‘35)

This relation sets the value of a. The integrals appearing on both sides can be evaluated using the
saddle point method when u > 1, as in the Kramers method. a should be located between the two
local minima of the potential, around the local maximum. In the generic case where the two minima
are different, for these integrals to be equal, the local maximum should be between a and the largest
local minimum (i.e., not the global minimum). We use this local minimum x,;, to evaluate the
integral, leading to the same result as before:

\/‘u X m xmax)|
2717

eu(xmin)—u(xmaX)‘ (1536)

The eigenvectors pg and p; are shown on Fig. 15.1(b); the eigenvalue is shown in the spectrum of
the operator .Z on Fig. 15.1(d).
Mapping on a two states system

We assume that the potential is large, so that the equilibrium distribution is peaked around the two
local minima x.: we decompose it into

po(x) = o—p—(x) + a;p4(x), (15.37)

where p. is peaked around x4, and p. is normalized; this imposes o + o— = 1.
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From the leading order in u, Eq. (15.29), we see that the derivative of y is minimal close to the
local minima; assuming that it is almost constant over the domains where p. takes “significant
values”, we have

pi1(x) =ya_p_(x) + oy pi(x), (15.38)

where Y3 = y(x). Since the integral of p; is zero, we can write it as (up to a constant that does
not matter)

p1(x) = —p_(x) +p+(x). (15.39)

The distributions p are shown on Fig. 15.1(c).

If the probability density is a linear combination of p_ and p., p(x,t) = a_(t)p—(x) + a4 (t)p+(x),
we can compute its evolution from

Lpr=2L(poLogpr) =tazpipr = L0 (—p-+p4). (15.40)
Hence,
Lp=[-a-(t)a; +a(t)a_]u(—p-+p+). (15.41)

Writing d,p = —D.% p and identifying the coefficients of p., we get

d (l+ o a+
& <a_> —DuM (a_> , (15.42)
where
M= (‘O‘ +°‘+>. (15.43)
o  —oy

One can check that the eigenvalues of M are 0 and —1.

On timescales larger than the relaxation time in one well and shorter than the transition rate between
the two wells (~ 1/(Du)), the dynamics of the system is described accurately by these two states
system. We see that the spectrum of the Fokker-Planck operator .Z has a gap between the smallest
non-vanishing eigenvalue u and the second eigenvalue (Fig. 15.1(d)). In the two states system,
there is only one timescale because the two transition rates are related through detailed balance.

First passage time

Here, we use the time of the first passage at a point a on the other side of the barrier as a measure
of the time it takes to cross the barrier. First, we show that a precise definition can be given for the
average first passage time, and that it obeys a simple equation. Second, we solve this equation to
get the first passage time.

The first passage time is an intuitive observable to look at, since, e.g., a chemical reaction occur when
the two reacting molecules meet for the first time. Another example comes from the optimization
of search processes, where one wants to minimize the mean first passage time.
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Definition of the first passage time

We consider an overdamped Langevin process starting at xg, and we want to know the first time
when it reaches the point a, T,(xo), which is a random variable. We are interested in the mean first
passage time (MFPT), T, (xo).

In order to determine the first passage time at @, we see a as an absorbing point: a distribution
Pa(x,x0,t) of “particles” is localized at xy at r = 0, and evolves following the Fokker-Planck
equation, excepts that particles that hit a are removed from the sytem. This imposes the condition
pala,xo,t) = 0. Hence this distribution follows

p(x,x0,0) = d(x —xp), (15.44)
o;p(x,x0,t) = —D.Lp(x,x0,t), (15.45)
pla,xp,t) =0. (15.46)

The integral of the distribution at time ¢ is the fraction of particles that have not reached a yet, i.e.,
T, > t for these particles:

a

PIT(0) 2 1] = [ puloo,r)dr (15.47)

The MFPT can be obtained from this relation:
T (xo) = / P[T,(xo) > f]dt (15.48)
0
o ra
= / / Pa(x,x0,1)dxdr. (15.49)
0 —o0

Now, we look for an equation satisfied by the MFPT.

Adjoint Fokker-Planck operator and equation for the mean first passage time

The Fokker-Planck equation relates the time derivative of the distribution p(x,x’,¢) and the Fokker-
Planck operator applied to the final position x. However, the MFPT is a function of the initial
position, so that we have to relate the time derivative of p(x,x’,7) to an operator applied to the
initial position x’. In order to derive this relation, we note that for all ¢/,

p(x,x' 1) :/p(x,x”,t—t/)p(x”,x/,t’)dx”. (15.50)

Differentiating with respect to ¢, we get

0= / [=0p et =) p(" X1+ p(a, 2" 1 = 1) p(x” X 1) dx” (15.51)
= /[—Qtp(x,x”,t—t’)p(x”,x’,t’) —Dp(x, X"t —t") L p(x",x ,¢")]dx" (15.52)
:—/ [&p(x,x”,t—t’)—i—D,,?,’J,p(x,x”,t—t’) p(” X 1) dx” (15.53)

(15.54)

Setting ' = 0 so that p(x”,x',¢") = 6 (x"" — '), we get

op(x,X 1) = —DZLp(x,x,1). (15.55)
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We have used the definition of the adjoint operator .Z as

(. 28) = [ 10250 = [(£TN)Weldx= (£ 7.g). (15.56)

and the index of .Z denotes the variable on which it applies. From this expression we can determine
explicitly the adjoint operator:

L f(x) = —e®9, [eﬂ*(x) d: f(x)} . (15.57)

We note that the definition of the adjoint of an operator depends on the scalar product that we use.
The scalar product used here is not the same as the one defined in Eq. (15.11), for which .Z is
self-adjoint. Here, obviously, .Z is not self-adjoint.

With Eq. (15.55) at hand, we can derive an equation for the MFPT. We consider the quantity

/w/a 0 pa(x,x0,t)dxds. (15.58)
0 J—oo

On one hand, the integral on the time can be computed:

| apasonas = [ parsods= [ pro,0)dr =1, (15.59)
0 —00 (=] —o0

because when t — oo, all the particle have been absorbed. On the other hand, the time derivative
can be expressed with Eq. (15.55):

i

/Om / 0 pa(x,X0,t)dxdt = —D /Om / L pa(x,x0,1)dxdt = —DZL T, (xo). (15.60)
We thus get an equation for the MFPT:

LT, (x) =D, (15.61)
that should be completed with the boundary condition

T,(a) =0. (15.62)

Computation of the first passage time

We solve the equations for the MFPT, Eqgs. (15.61,15.62); explicitly,

X [e—"@ T, (x)} — D let), (15.63)

First, we integrate this equation between —oo and x, assuming that e “¥) 9, T, (x) — O
X——o0
X /

O T, (x) = =D~ le"™ / e “Wdy. (15.64)
Now, we integrate it between x and a, and use the boundary condition (15.62):

— a 'X, / J!

T,(x)=D"" / / ) =) gy qy (15.65)

X —o0

This expression corresponds to the result obtained with the flow over population method, Eq. (15.6):
T,(—) = 1/k.
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In the totally asymmetric simple exclusion process (TASEP), “particles” move to the right along a
line and cannot pass each other. Particles are injected at the left end of the line and remove at the
right end. This model can represent vehicles in a traffic jam or molecular motors moving along
actin filaments.

From abstract models to many-body systems

In the previous chapters, we have introduced the master equation that describes the evolution of the
probability distribution of the system over discrete states, and the Fokker-Planck equation, which
describes the evolution of the distribution of continuous degrees of freedom subject to deterministic
forces and noise. We will see that these simple frameworks can be used to describe many-body
systems, which may be counter-intuitive.

We start from the Fokker-Planck equation
1
p(x,t):—V- zf(x,t)p(x,t)—DVp(x,t) ) (161)

where x € R?, which describes the evolution of the probability distribution of a “particle” following
the overdamped Langevin equation
1
x(t) = If(x(t),t)+x/2Dn (). (16.2)

First, we consider a simple example: we want an equation analogous to the Fokker-Planck equation
for an inertial particle, which follows the general Langevin equation

mi(t) = —Ax(t) + f(x(t),1) +V2DAn(¢). (16.3)

Incorporating inertia seems to change the level of difficulty of the problem, as it changes the order
of the time derivative. However, if we introduce the velocity v(¢) = x(), the inertia just affects the
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dimension of the problem. The Langevin equation reads

x(t) = v(1), (16.4)
v(t) = —%v(t) + f(x(r),0) + \/Znn(t). (16.5)

This is a first order equation for which it is straightforward to obtain a Fokker-Planck-like equation
for the distribution p(x,v,7). The currents in the x and v directions are given by

jx(xvvat) = vp(x,v,t), (166)
DA?
joent) = | =2+ £ | L) = Z- V(). (16.7)

The evolution of the distribution is thus given by
plxe,v,t) ==V jx=Vy- jy, (16.8)
DA?
= —v-Vap+V,- (|2 f(@0)] p) + 5 Vip(e.v). (16.9)

This is the Kramers equation.

We now turn to a many body system, which is even simpler. We describe the collective motion of N
particles interacting through a pair potential U (x) and obeying the overdamped Langevin equation

%i(1) = =27"Y. VU (xi(r) — xj(1)) + V2D (1). (16.10)
JF#i
The Fokker-Planck equation for the distribution p(xi,...,xy,?) reads
1

N
Vi | p(xr,..oxn,t) Y. VU (xi —x;) | +D Y. Vip(xi,....xw,1). (16.11)
JAi i=1

M=

p(XI,...,XN,t) = Z

1

I
—_

This equation is referred to as the Smoluchowski equation.

In this chapter, we use the discrete master equation to describe the motion of interacting particles
along a line.

Definition of the TASEP

This model is defined on a one-dimensional lattice of N sites. Particles move on this lattice in a
continuous time stochastic process that obeys the following rules: during a short time interval 8¢
(see Fig. 16.1),

— a particle standing on the site i has a probability ¢ to move to the i + 1, provided that this
site is empty,

— if the site i = 1 is empty, it is filled with a particle with probability oz,

— if there is a particle on the site i = N, it is removed with a probability 8 dz.

This system is out of equilibrium, because the particles can only move to the right (i.e., it does not
satisfy detailed balance). We are interested in the density profile and the current of particles in the
stationnary state. The two parameters of the system are @ > 0 and § > 0.

Here, we solve it in the mean-field approximation. It has been solved exactly, but the solution is
rather complicated [Derrida1992, Derridal1993].
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adt ot ot ot pot
N gx . a8 . & 08
1 N

Figure 16.1 — Possible motions with their probabilities during a short time interval 0t; the configu-
ration is unchanged with probability 1 — (3+ o+ 3)6¢.

Evolution of the average occupation numbers

At a given time, the state of the system is given by the occupation numbers (7;(t))1<i<n, Ti(t)
giving the number of particles on the site i at time 7; 7;(r) € {0,1}.

Direct derivation

The dynamic rules defining the model can be directly translated into equations of evolution of the
occupation numbers 7;(¢). We consider a site i in the bulk (i.e., i ¢ {1,N}):

— if 5j(r) =0 and 7,_,(¢) = 1, 7;(t + 6¢) = 1 with probability dt,

— if () = 1 and 74 (¢) = 0, 7;(t + 6¢) = O with probability o,

— otherwise, 7;(t + 8t) = 7;(¢).

This can be cast in the following form:

7(1) with probability 1 — 20t
Ti(t+61) = Ti(t)+ [l —7(t)]Ti—1(r) with probability &7 (16.12)
T;(t) i1 (1) with probability ot

The same approach can be used at the boundaries, leading to

71 (1) with probability 1— (14 «a)d¢
Ti(t+0t)=< 1 with probability oot (16.13)
71(t)T2(t) with probability &z
and
Ty (t) with probability 1— (14 )67
Tn(t+6t) =< tv(t)+[1—1n(t)]Tv_1(¢) with probability ot (16.14)
0 with probability [ dt

Averaging and taking the limit ¢+ — 0, we get the time derivative of the average occupation
numbers:

%<Ti> = (Ti—1) — () + (TiTip1) — (Ti-1Ti), (16.15)
S lm)=a— (14 a)m) + (am), (16.16)
%<TN> = (tv_1) — B(tv) — (tv—17w). (16.17)

From the master equation
Master equation-

These equations can be obtained in a more rigorous manner by writing the master equation for
this system. The master equation is an equation for the probability for the system to be in a given
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state. Here, a state is given by the set of the occupation numbers, (7;)1<;<n, hence we look for an
equation for the probability P((7;);7). We write the equation and then explain the origin of the
different contributions:

d N—1
ap [Z ’L'] TH_] P((’Ci);l)—l- Z(l—’L'j)Tj+1P(...,1j,0j+1,...;l)
j=1
—OC(I—’L'l)P(( ,'); )+0671P(01,...;t) (16.18)

—BTNP((’C,');Z) +ﬁ(1 — TN)P(. . IN;Z).

The notation (...,1;,0;41,...) is a shorthand for (7i,...,7j—1,1,0,7j32,...,7n). The first line
corresponds to movements in the bulk, the second to particles entering the system and the third to
particles leaving the system. In each line, the first term is a loss term and the last term is a gain
term.

In the first line, the loss term corresponds to all the positions where the movement j — j+1 is
possible, i.e., where 7; = 1 and 7j,; = 0; in the case, 7;(1 — 7j;1) = 1. The gain term corresponds
to all the positions where the movement j — j-+ 1 may have happened recently, i.e., to all the
positions where 7; =0 and 7,1 = 1, or (1 — 7;)Tj31 = 1. If the movement j — j+ 1 has happened,
the previous configuration was (7y,...,7j-1,1,0,Tj2,..., ).

The second and last lines follow from the same analysis.

Evolution of the average occupation-

Now that we have the master equation, we can write the evolution of the average occupation number,

=Y wP((5):1). (16.19)

We thus multiply Eq. (16.18) by 7, and sum over (T;).

We first consider the first line, and take a particular j in the two sums. If j ¢ {k— 1,k}, we have

Zrk —7;(1 = 7551 P((5);t) + (1 = 7)) T 1 P(.. ., 11,041, .51)] (16.20)

= Z’Ek ’L'J 1 —’L'H_])P(...,1j,0j+1,...;l)+fj’-(1 —f;+1)P(...,1j,0j+1,...;l)}

(16.21)

=0. (16.22)

We have used the fact that the first term is non zero only if 7; = 1 and 7;,; = 0 and in the second
term we have changed variables Tj- =1-r1, 7:;- +1 = 1—7j41. This result is expected: a jump from

Jj to j+ 1 does not affect the occupation of the site k ¢ {j, j+ 1}. The same steps can be used to
show that the second and last lines do not contribute if j ¢ {1,N}.

Now assume that j = k in the first line. Now we can use that ’L'JZ =1;and 7;(1 — 7;) = 0. We get
ka (1 = T ) P((7)st) + (1 = %) T 1 P(oo s 1a, Oppr - 5] (16.23)

==Y w(l—5)P((n)0) (16.24)
(%)

= —(%(®)[1 =71 (1)])- (16.25)
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The third possibility is j =k —1:

Zrk T 1 (1 =) P((7);t) + (1 = 1) TP(. ., 151, 0, .. .51)] (16.26)
=Y (1 =5 ) %P (..., 11,0, 50) (16.27)
(%)
1
= Y (O-m-Du Y, P(...L1,0...51) (16.28)
Te—1,T=0 (r, \k—1k
=1xY %1 (1—%)P((5),...:1) (16.29)
(w)
= (1 (0)[1 — w(?)]). (16.30)

Gathering Eqgs. (16.25) and (16.30), we get

d

5<Tk> = (Te—1) — () + (U Tt1) — (Te—1 k) (16.31)
which is identical to Eq. (16.15).

The equations for the boundary terms can obtained in the same way.

Mean-field approximation

The equations for the evolution of the average occupation numbers, Egs. (16.15-16.17), are not
closed: they involve averages of products of occupation numbers. We could derive the evolution of
the averages of these products, but it would involve, in turn, averages of products of three occupation
numbers, and so on. This kind of hierarchy is called the Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy and is common interacting particle systems.

In order to obtain a closed set of equations, we need to close the hierarchy at some level, making an
approximation. The simplest approximation that we can make is the mean-field approximation,
whereby the occupation numbers are assumed to be independent variables (this amounts to neglect
the correlations between the occupation numbers):

(T(1)Ti1 (1)) = (T(1)) (Tis1 (1)) (16.32)

Using the mean-field approximation in Eqs. (16.15-16.17) and introducing the density p;(r) =
(ti(1)), we get

dp;

Tﬁ = Pi—1 — Pi+Pi(Pir1 — Pi-1), (16.33)
d

DL —a—(1+a)pi+pips, (16.34)
d

% = pn-1—PBPN — PN-1PN- (16.35)

We note that evolution at the boundaries, Eqgs. (16.34,16.35), are of the form of the evolution in the
bulk, Eq. (16.33), with additionnal sites at 0 and N + 1 with densities

o= a, (16.36)
pri1=1-B. (16.37)

We note that the density at these “virtual” sites can be larger than 1 (for pg) or negative (for py1),
because there is no upper bound on & and 3.
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Continuous limit

The equations for the density, Eqs. (16.33,16.36,16.37) can be solved exactly [Derrida1992].
However, we can get a better intuition on the behavior of these equations by taking a continuous
limit in space. We should keep in mind that this approximation is not justified at all here, since the
only length scale in there is no small scale in this system.

The continuous limit is obtained via a Taylor expansion:
pi — p(x), (16.38)
1
Pit1 —>p(x)ip’(x)+§p”(x). (16.39)

Inserting this in Eq. (16.33), we get
1
op = (2p—1)8xp+§8xzp. (16.40)

We notice that this equation can be written has a conservation equation with a current of particles j:

Ip = —duj, (16.41)

1
j=p(1=p)=5dp. (16.42)

In an homogeneous system, j = p(1 — p). This expression has a simple interpretation: it is the
product of the density, p, and the “velocity” 1 — p. Indeed, in the mean-field picture, the velocity is
given by the rate of jumps (i.e., 1) times the probability for the next site to be empty, which is 1 — p.

Phase diagram

Stationnary regime and mapping to an overdamped particle in a potential
We look for stationnary density profiles. In the stationnary state, d,j = 0, hence the current is
uniform and we note j(x) = J. From Eq. (16.42), we have to solve:

op=2p(1—p)—2J. (16.43)
We are interested in the behavior in the thermodynamic limit, i.e., when the system is very large.
The first term on the right hand side of Eq. (16.43) is bounded: p(1 —p) € [0, 1/4]. If J does not
lie in this interval, there is a density gradient, and, since the system is very large, a large density

difference between the two ends of the system. However, the density difference cannot exceed one,
hence we deduce that J € [0,1/4].

The equation satisfied by stationnary density profiles, Eq. (16.43), can be seen as the overdamped
(i.e., without inertia) motion of a particle in a potential: we change notations as x — ¢, p — X, and
introduce the potential

U(X)=2JX —X>+ §X3, (16.44)
then X () follows
X(t) = —U'(X(1)). (16.45)

With this analogy, looking for the possible density profiles amounts to look for the possible
trajectories for the overdamped particle.

The potential is shown in Fig. 16.2(a,b) for / =1/4 and J < 1/4.
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Figure 16.2 — Effective potential for the density profile for / = 1/4 (a) and J = 0.18 (b). Corre-
sponding particle trajectories or density profiles (c,d).
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Figure 16.3 — Phase diagram of the TASEP model in the mean-field approximation.

J=1/4

When J = 1/4, the potential has a single stationnary point at X = 1/2 (Fig. 16.2(a)). Since we work
in the long time (i.e. large system) limit, the particle has to spend a long time at the stationnary point.
Hence, the possible behavior for the particle is to start at X(0) = a > 1/2, go to the stationnary
point, spend a long time there, and finally slide down the potential to X(N+ 1) =1—f8 < 1/2. The
trajectory of the particle, or equivalently the density profile, is shown on Fig. 16.2(c). This situation
corresponds to & > 1/2 and B > 1/2. This phase is called the “maximal current” phase, since the
current of particles takes its maximal value.

J<1/4

When 0 < J < 1/4, the potential has two extrema at x_ and x.., where the particle can stay for a
long time (Fig. 16.2(b)). They satisfy x_ +x; = 1. Two types of trajectories are possible:

(A) Startat X(0) = a =x_ < 1/2, spend a long time here, and finally slide down to X (N + 1) =
1 — B <xi.Hence, B > 1—x; =x_ = a. This phase is the “low density” phase, observed
when oo < 1/2 and B > «.

(B) Start at X(0) > x_, slide down to x; and spend a long time there, so that X(N+1)=1— 8 =
x4 > 1/2. This is the “high density” phase, observed when 8 < 1/2 and o > f3.

The corresponding density profiles are shown on Fig. 16.2(d).

If o = B, the particle can start at x_ = &, spend a long time here, slide to x; = 1 — 3, and spend a
long time there. In the density profile, the slide corresponds to a domain wall.

The phase diagram is represented in Fig. 16.3. Obtained here in the mean-field approximation, it is
unchanged with the exact solution.

Mapping to other systems: Burgers and KPZ

The TASEP model has connection with other systems coming from different domains. We quickly
show that the equation for the time dependent density, Eq. (16.40) can be mapped to the Burgers
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equation or to the KPZ equation without noise.

In order to map it to the Burgers equation, we introduce y(x,7) = p(x,7) — 1/2; Eq. (16.40) becomes

1
a,wzzq/axwriafw. (16.46)

This is the Burgers equation, used to describe shocks (discontinuities that appear at a finite time
from a regular initial profile).

Writing ¥ = d\h, the equation becomes
1
0,9ch = 2(d,h) (92h) + 58,?11 (16.47)

183h (16.48)

=0, [(9uh)?] +59}h.

Integrating over x, without the integration constant, we get
2, 1
dh = (dh)” + Eax h, (16.49)

which is the Kardar-Parisi-Zhang (KPZ) equation without noise, an important model for interfaces.
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Interfaces are ubiquitous in nature: they appear at the interface between a liquid and a gas, between
magnetic domains with opposite orientations, at the imbibition front in a porous medium, or a the
front of a fracture in a breaking sample. More generally, an interface refers to a narrow region
separating two homogeneous phases. It is often more convenient to study the shape and dynamics
of the interface itself rather than that of the neighbouring phases.

In this section, we discuss the models and observables used to describe interfaces.

Simple models

We give here two simple models for interfaces and use them to discuss the basic observable used to
describe an interface, its roughness.

Interface of a liquid at equilibrium in dimension d = 1

We model the one dimensionnal interface between a liquid and a gas at the interface between up
(s =1) and down (s = —1) regions in a planar Ising model with coupling constant J. We assume
that there are no overhangs nor bubbles, hence the shape of the interface is entirely given by its
height 4; in the column i.

The energy difference between an interface with heights (%;) and the flat interface (that we take as
the energy reference) is

H%D:NZWH—M- (17.1)

We can introduce the height differences, or step sizes, as

yi=hi—hi_y; (17.2)
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they allow to write the energy as
i) =27Y |yil =) e(), (17.3)
i i

where e(y) = 2J|y|. This means that the step sizes are independent: we can study the properties of
one step, and deduce the properties of the whole interface.

For one step, the partition function is

= Ye T oYe2lo 2 IEET ), (17.4)
= = 1—e 2/ 1—e 2

where j = J/T. The average of y is zero by symmetry, (y) = 0, and its variance is

1 9%z 1

Y el = _
= 4792 2sinh(j)?

(17.5)

The difference between the heights at i = L and i = 0 can be written as i — hg = Y'~, y;, hence

{h — ho) =0, (17.6)

L

{[he —ho]*) = <y2>zm- 17.7)

The second equation defines the roughness, or width, of the interface, here
w(L) = v/ ([hy — ho]?) ~VL=L*, (17.8)

where o = 1/2 is the roughness exponent.

In this model, we could define the roughness of an interface, but the interface is at equilibrium and
its statistical properties do not evolve in time.

Random deposition model

Here, we want to describe an interface that “grows” with time. We take the example of molecular
beam epitaxy, used to manufacture computer chips and other semiconductor devices. We start with
a flat surface and start depositing atoms on it: atoms arrive at the interface after a ballistic motion
and immediately stick to it.

We model this process with the random deposition model: the height of the interface is given by the
heights (h;(¢)) of its columns. At each time interval &, a column is chosen at random and its height
is increased by 1: h;(t + 8t) = h;(t) + 1.

If there are N columns, the probability that a given column has received k atoms during a time ndt

is
P(h;(ndt) = k| = " 1 ! nkl 17.9

We focus on large systems: we take the limit N — oo, keeping the injection rate per site A constant,



17.2 Generalities on stochastic growth models 143

i.e. Not = 1/A. We distribution of the height of a column at a time ¢ becomes

1 (¢/6t)—k 1
Plhi(t) = k] = (t/k&> <1 - N) N (17.10)
B ()LNZ)' 1 ANt—k 1
" KI(AN: —k)! <1_N> NE (17.11)
k
= (AZZ) e_mﬁ (17.12)
e (A)
Tk (17.13)

The distribution of £;(r) is Poisson distribution with parameter Af. A Poisson variable with
parameter & has mean and variance o.

The height difference between two sites i and j is thus given by

([hi(t) = hj(0)]?) = (hi(6)?) + (hyj(0)*) =2 (hi(0)h; (2)) (17.14)
=2 [(hi(1)?) = (hi(1))?] (17.15)
=2At. (17.16)

‘We conclude that the width of the interface follows

w(L,t) ~Vi=1P, (17.17)

where 8 = 1/2 is the growth exponent. The width does not depend on L, but we can write w(L) ~ L%

with o = 0, meaning that the interface is extremely rough.

Here, the interface grows in time but its spatial properties are trivial, because there is no “surface
tension” that constraints the height fluctuations as in the previous model.

17.2 Generalities on stochastic growth models

17.2.1 Self-affine behavior and scaling laws

The width of a growing interface depends on its size L and the time . We have seen simple
models where w(L,¢) depends separately on this two variables; here, we want to combine these
dependences in a single law for the width.

We can discuss the behavior of the width at short and long times in realistic models, with respect to
a timescale t*(L) that is defined later:

— At short times, t < t*(L), points of the interface separated by a large distance do not have
time to “communicate”, hence the width is not sensitive to the size L, but only to the time,
and we have

w(L,t < t*(L)) ~ P, (17.18)

— Atlong times, ¢t > 1*(L), the interface has relaxed to the stationnary state, and its width does
not depend on time:

w(L,t > t*(L)) ~ L%, (17.19)
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As we will show, the characteristic time depends on the size of the system as a power law,
t*(L) ~ L¥, (17.20)

with an exponent K that is not independent of ¢ and f3.

Power law behaviors are characteristic of systems that are scale invariant, or self-affine, meaning
that the height A(r,7) has the same statistical properties as the rescaled height %, (s, u), defined by

h(r,t) = b~ %hy(br,b"1), (17.21)

where b is a scaling factor. From this expression, we can determine the behavior of the width: the
width of the interface # is related to the width of the interface A, via

w(L,t) = b~ %w,(bL,b*t) = b~ *w(bL,b*) (17.22)

because /& and /;, have the same statistical properties. Since the scaling factor b is arbitrary, we can
set it to 1/L, leading to

w(L,t) =L"f (%) : (17.23)

where f(u) = w(1,u). This is the most general expression that we can get for a growing interface.
We recognize the timescale #*(L) = L¥, and the asymptotic behavior of f(u) can be deduced from
Egs. (17.18,17.19):

— Large times 7 > ¢*(L) correspond to u >> 1, and w(L,t) ~ L% implies that

f(u) — f(e). (17.24)

U—oo

— Short times < ¢*(L) correspond to u < 1, and w(L,t) ~ tP implies that

flu) ~ u®*=ub, (17.25)
u—0
hence
o — g (17.26)
Models

During its growth, the dynamics of an interface contains a deterministic part that depends on its
shape and a noisy part:

Oih(r,t) = Fh;r,t]+n(r,t1). (17.27)

The noise is usually taken to be a Gaussian white noise in space and time. Since it is Gaussian, its
first two cumulants define it completely:

(n(r,1)) =0, (17.28)
Mr,t)n(¥,t"))y =2D8(r—r)8( -1, (17.29)
where D is a “diffusion constant” (by analogy with the Langevin equation).

The deterministic part is constrained by symmetry considerations, such as invariance under transla-
tion and rotation of the space variable r, invariance in time, invariance under translation (but not
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necessarily inversion) in the direction of growth 4. It can be non-local in space, but it is usually
local in time, i.e., the system has no memory. Common examples are:

F[h;r,t] = VV2h(r,t) + A[Vh(r,1)]?, (17.30)
Flir = /Wdrq (17.31)

Eq. (17.30) contains a surface tension term and a non-linear term that arises, e.g., in the KPZ
equation (see discussion in Sec. ??). Eq. (17.31) describes the elasticity of a fracture front or a
contact line.

The deterministic part can sometimes be derived from an energy; here, we consider the case of
surface tension. The surface energy is given by the area times the surface tension v:

E[l=v / VU TR Par~ B+ / (VA(r)2dr, (17.32)

where we have used the small-slope approximation and Ey is the energy of the flat interface. Now,
we compute the change in energy due to a small change in height, 6A(r):

E[h+8h) —E[h] = v / Vh(r)-V8h(r)dr = —v / [V2h(r)] 8h(r)dr. (17.33)

This expression allows to identify the functional derivative of the energy with respect to the change
in height at r, that gives the force to the interface at this point:

Flh,r] = —6‘25) = vV2h(r); (17.34)

we recover the surface tension term of Eq. (17.30).

Note that the first term of Eq. (17.30) and the expression in Eq. (17.31) tend to flatten the interface,
while the noise makes the interface rough.

Edwards-Wilkinson model
Definition
The Edwards-Wilkinson model represents an interface growing with surface tension:
Oh(r,t) = VV2h(r,t) +n(r.1). (17.35)

We denote as d the dimension parallel to the interface, i.e., the dimension of the vector r.

Scaling laws

We can determine the exponents by plugging the equation defining a self-affine interface, Eq. (17.21)
in Eq. (17.35), leading to

b*=%hy (br,b¥t) = vb*~*V2hy,(br,b*t) + 1 (r,1). (17.36)

We need to determine how the noise is rescaled; we use its variance:
(n(r,n (1)) =2D8(r—r')8(t -1 (17.37)
=2D8 (b b[r—r])8(b~*b¥ [t —1]) (17.38)
= 2Db RS (b[r — ') 8 (b¥[t — 1)) (17.39)
= b (n(br,b"t)n (br,b*t")), (17.40)
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so that the noise is self-affine with

n(r,t) = b2 n(br,b%) (17.41)
Hence, the rescaled equation for the evolution of the height is

b hy (br,b5t) = VB2V 2hy, (br,b¥t) + b2 0 (br, b ). (17.42)

This equation is identical to the initial one if

d+x
K—a=2—o= —; , (17.43)
meaning that
K=2, (17.44)
d
o= 1_5_ (17.45)

We find o = 1/2 for a line (d = 1), as in the equilibrium interface discussed in Sec. ??. Ford = 2,
o = 0, meaning that the interface does not get wider as the interface gets larger (at least, not as a
power law).

Exact solution

The Edwards-Wilkinson model can be solved exactly, and the width of the interface can be computed.
In order to do so, we Fourier transform the height in space:

h(k,t) = / e %" h(r,t)dr, (17.46)
/’l(l’,l) _ /eik'ril(k,l) (;:-f)d . (17.47)

The evolution of the interface, Eq. (17.35), is now given by
h(k,t) = —vith(k,t) + 7 (k,1). (17.48)

The correlation function of the noise is given by

(kA 1)) = / e Il (r ) (¢, ))drdr! (17.49)
=2D5(t—1') / e kK1 s (r— ) drdr! (17.50)
=2D8(t 1) / e ikHK)rg, (17.51)
=202m)¢DS(k+K)8(r —1). (17.52)

Now that the Fourier modes are decoupled, they can be determined independently:

4 /
h(k,t) = / e YRR (k,)dr (17.53)
JO
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We will need the correlation between two modes, at equal times (the correlation at different times
is also interesting):

4 ! ! ) i
(h(k,0)R(K 1)) = / / e VRV 3 (R (K 7)) de” (17.54)
0 J0
4 /
=202m)*DS (k+ k') / e 2R () gyl (17.55)
0
d
— (zf]zzD [1—e*2Vk2f} S(k+K). (17.56)

‘We want to determine the width of the interface, defined as
w(r,t)? = ([h(r,t) — h(0,8)]*) =2 [(h(0,1)*) — (h(r,t)h(0,1))] = 2[C(0,t) — C(r,t)]. (17.57)

We have to compute

C(r1) = (h(r,)h(0,1)) (17.58)
L dkdK!
_/ Wr (k) R(K 1 ) oy (17.59)
—2vkt dk

0 / T (17.60)

Finally,

ey dk

—/k 1— (1 )(2n)d‘ (17.61)

We can extract the dependence on r and ¢ without computing the integral. Changing the integration
variable to ¢ = rk (r = |r|), we get

W(r7t)2 — 2VDr2d/q2 (1 _ eifII) (l _efzvq2l‘/r2> (;i;])d — 27Dr206f <t*zr)> , (1762)

where ¢ is the component of the vector ¢ parallel to r and t*(r) = r>/v. We recover & = 1 —d /2,
Kk = 2, and we have an explicit expression for the scaling function,

_ i _ 2u d
f(u):/q 2(1—eq')(1—e 2 >(2;1)d. (17.63)
We can easily get the derivative of f:
old1) g —24%u dg 2 —1/(8u
2/ e (2m)d — (8mu)d/? (1 —e ))‘ (17.64)
In the long time limit, Eq. (17.60) becomes
1kr
/ = 27: (17.65)
Hence,
D [ ., dk D
V2C(r,0) = = [ e B = o0 (17.66)

This means that C(r, o) has the form of the electrostatic potential created by a charge at the origin
in dimension d.
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Dependence on the dimension
d=1-

In dimension d = 1, we can compute f(u) for arbitrary u:

2 | 1
) = \/f(l —e—‘/(g”)) + S erfe <\/@) _ (17.67)

Notably,
2u
f(u) DoV (17.68)
1
f(u) o (17.69)

The solution to Eq. (17.66) is
D
C(x,00) = ——x|. 17.70

Hence the “width” at a scale x is

D
w(x,00)% = “/x‘ (17.71)

d=12-
At short times, f’(u) ~ 1/(47u), hence

1
f(u) ot Offfru) : (17.72)

The solution to Eq. (17.66) is

D
C(reo) =~ log(r). (17.73)

These logarithmic dependences are somehow problematic, they mean that the theory is ill defined
and that additionnal regularizing terms are required.
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