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Chapter 1

Solid mechanics

Here we recall the main equations of solid mechanics.

1.1 Stress and strain on a simple example

As a simple example, we consider a piece of rubber stretched by a force F in the x-direction, and free
in the y and z directions. Under this force, the length of this piece extends from length L to length
L+ ∆L. We denote the strain in the x-direction

εx =
∆L

L
. (1.1)

The force is actually proportional to the area A of the cross-section in the (y, z) plane, and, in the
linear regime of the material to the strain εx and to the Young’s modulus E of the material:

F = EAεx. (1.2)

The force per unit area is the stress

σx =
F

A
= Eεx. (1.3)

In the transverse directions y and z, there is no stress (σy = σz = 0) but we can observe a
contraction, which is proportional to the longitudinal stress:

εy = εz = − ν
E
σx, (1.4)

where ν is the Poisson ratio of the material.

The Young’s modulus E and Poisson ratio ν characterize any isotropic material. The above equa-
tions contain all we need to know to handle general deformations, we just have to make them local
and tensorial, as we will see.

1.2 Strain and stress tensors, Hooke’s law

First, we have to define the strain. We have given a macroscopic definition in Eq. (1.1), but we need
a microscopic, or local, one. We denote u(x) the longitudinal displacement of a piece of material
at position x. Setting u(0) = 0, we should have u(L) = ∆L, and a regular deformation imposes

5



6 CHAPTER 1. SOLID MECHANICS

u(x) = ∆L
L x. The strain can then be obtained locally as εx = ∂xu. In general, the displacement is a

vector field u(r), and its derivative generalizes to a rank 2 tensor:

εij =
1

2
(∂iuj + ∂jui) . (1.5)

We took it to be symmetric for a reason that will become clear below.

Alternatively, the strain can be derived from the metric. Consider a deformation that takes a piece
of material from r to R(r) = r + u(r). Assuming that the material is initially at rest, its reference
metric is g0

ij = δij . Now the metric of the deformed material is

gij = ∂iR · ∂jR. (1.6)

To order one in ∇u, the metric is
gij = δij + ∂iuj + ∂jui. (1.7)

The strain is defined as the difference with the reference metric:

εij =
gij − g0

ij

2
. (1.8)

Since the metric is symmetric, εij should be symmetric.

The stress describes the forces in the material. It is also a rank 2 tensor, which we denote σij . The
force exerted through a surface of a normal n and area δA is given by

δFi = δAσijnj . (1.9)

We use Einstein convention for the summation over repeated indices. From a simple calculation of the
moment of the forces exerted on a small cube, one can show that the stress tensor is symmetric.

The only isotropic tensorial relation compatible with the relations of Sec. 1.1 is the Hooke’s law:

σij =
E

1 + ν

(
εij +

ν

1− 2ν
εkkδij

)
. (1.10)

This relation can be inverted; taking the trace of this relation we get σkk = E
1−2ν εkk, and we deduce

εij =
1

E
[(1 + ν)σij − νσkkδij ] . (1.11)

In the example of Sec. 1.1, the only non zero component of the stress field is σxx. From the inverse
of Hooke’s law, we get for the strain:

ε =
σxx
E

1 0 0
0 −ν 0
0 0 −ν

 . (1.12)

1.3 Equilibrium

From a force balance on a small volume element, we arrive at the equilibrium equation:

∂iσij = 0. (1.13)

By computing the work of the forces on a small volume element, we find the volumic energy density:

e =
1

2
σijεij . (1.14)



Chapter 2

Euler-Bernouilli beam theory and
applications

References: [Audoly and Pomeau, 2010, Chap. 3.3].

In this chapter we present the Euler-Bernouilli theory for inextensible beams (or rods), and appli-
cation to Euler buckling of rods and plates, and to wrinkling on a foundation.

2.1 Two dimensional elasticity with plane strain or plane stress

2.1.1 Plane stress

The Euler-Bernouilli (EB) beam theory can be considered as a two-dimensional theory, meaning that
the stresses in third dimension z are zero: σiz = 0. This is the plane stresses assumption.

Using σzz = 0 in the Hooke’s law (1.10), we get εzz = − ν
1−ν (εxx+εyy), so that εkk = 1−2ν

1−ν (εxx+εyy).
Defining

ε
(2)
kk = εxx + εyy, (2.1)

the Hooke’s law becomes:

σij =
E

1 + ν

(
εij +

ν

1− ν
ε
(2)
kk δij

)
. (2.2)

Now we do not have to consider the stress and strain in the z direction.

2.1.2 Plane strain

In case of plane strain, which should be used for plates that are “large” in the z direction, εiz = 0.

Using the condition εzz = 0 in the inverse of Hooke’s law (Eq. (1.11)), we get σzz = νσ
(2)
kk .

2.2 Flexion of a rod

Here we compute the bending energy of a rod. We consider a rod bent in the (x, y) plane with a radius
of curvature R (Fig. 2.1).

Before going through the complete calculation we use scaling arguments. The energy per unit
length of a rod with curvature κ = R−1 should be quadratic in κ: U ∼ Bκ2, where B is the bending

7



8 CHAPTER 2. EULER-BERNOUILLI BEAM THEORY AND APPLICATIONS

Figure 2.1: Rod bent in one direction.

modulus. Dimensionnally, [B] = EL (energy × length). The bending modulus should depend on the
Young’s modulus E of the material and the transverse lengthscale of the rod t. Since [E] = EL−3, we
should have B ∼ Et4.

On the sides of the rod, the boundary conditions for the stress are σxy = σyy = 0. We therefore
assume that these stresses are zero so that only σxx is not zero. These relations imply that εxy = 0

and εyy + ν
1−ν ε

(2)
kk = 0, leading to εyy = −νεxx.

The main deformation is the extension of the lines on “the long side” of the rod (above the neutral
line on Fig. 2.1) and the compression of the lines on “the short side” (below the neutral line). Consider
a line of length δx in the longitudinal direction in the rod at rest, at a height ∆y above the neutral
line (we can have ∆y < 0). In the bent rod, this line takes the length δx′ = δx × R+∆y

R , so that the
elongation is

εxx =
δx′ − δx
δx

=
∆y

R
=
y − y0

R
, (2.3)

where y0 is the height of the neutral line.

The stress field is given by σxx = Eεxx; it satisfies the equilibrium equation ∂iσix = ∂xσxx = 0.

We can integrate the stress field to get the displacement field:

εxx = ∂xux =
y − y0

R
, (2.4)

εxy =
1

2
(∂xuy + ∂yux) = 0, (2.5)

εyy = ∂yuy = −ν y − y0

R
. (2.6)

We get

ux =
x(y − y0)

R
, (2.7)

uy = − x
2

2R
− ν (y − y0)2

R
. (2.8)

The first term in uy is just the conformation to a circle with radius R.

From the stress and strain we can compute the energy. The volumic energy is

e =
1

2
σijεij =

1

2
σxxεxx =

E

2
ε2xx =

E(y − y0)2

2R2
. (2.9)

The energy per unit length U/L is obtained by integrating over a cross-section S:

U

L
=

E

2R2

∫
S

(y − y0)2dydz. (2.10)
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The neutral line has to be chosen in order to minimize the energy: ∂y0U = 0, which leads to

y0 =

∫
S ydydz∫
S dydz

=
1

S

∫
S
ydydz = 〈y〉S . (2.11)

Here, S is the area of the cross-section and 〈·〉S denotes the average over the cross-section. 〈y〉S is the
position of the “center of mass” of the cross-section. The bending modulus is then defined as

B = E

∫
S

(y − y0)2dydz = ES〈(y − y0)2〉S , (2.12)

so that
U

L
=

B

2R2
. (2.13)

We can compute the moment along êz exerted “through a cross-section” (we mean the moment
exerted by the right part of the rod on the left part):

M = −
∫
S
yσxxdydz = −E

R

∫
S
y(y − y0)dydz = −ES

R
〈y(y − y0)〉S = −B

R
. (2.14)

Note that this form of the moment is expected from the energy above.

If the cross-section is rectangular, with height (along y) t and width (along z) w, its bending
modulus is

B =
Et3w

12
. (2.15)

If the cross-section is a disk with radius r, the bending modulus is

B =
πEr4

4
. (2.16)

2.3 Equilibrium equations of a rod

Now assume that the (centre line of the) rod describes a curve in the (x, y) plane. We denote s the
curvilinear coordinate along the rod, t(s) the unit vector tangent to the rod at s and θ(s) the angle
between ex and t(s).

The local curvature is given by R(s)−1 = |θ′(s)|, hence from Eq. (2.13) the bending energy of the
rod is

U =
B

2

∫
θ′(s)2ds. (2.17)

The moment exerted through the cross-section at s (by the rod parts with coordinates s′ > s on the
rod parts where s′ < s) is, from Eq. (2.14),

M(s) = Bθ′(s). (2.18)

Note that θ′(s) < 0 in Fig. 2.1.

A force F (s) (the “vectorial tension”) can be exerted through the cross-section at s. With the
coordinates on Fig. 2.1, the force is Fi =

∫
σixdydz. Note that a force that is not along t(s) requires

a σxy 6= 0, which has not been considered in the equation for the bending modulus. A balance of
moments on the section [s, s+ δs] of the rod gives

−M(s) + t(s)δs× F (s) +M(s+ δs) = 0, (2.19)
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from which we deduce
M ′(s) + t(s)× F (s) = 0. (2.20)

The projection on êz is assumed.

If a force per unit length f(s) is exerted on the rod, then the vectorial tension obeys

F ′(s) + f(s) = 0. (2.21)

2.4 Euler buckling

2.4.1 Stability analysis at imposed force

We consider a rod of length L along êx submitted to a compressive force F . We assume that its ends
are free to rotate but can only move in the x direction. We show that there is a threshold force Fc
above which the rod buckles and adopts a curved shape.

From dimensional arguments, the critical force can only depend on the length L and the bending
modulus B of the rod, so that we should have Fc ∼ B/L2.

We look at the minimal value of F for a buckled solution to exist. We assume a small departure
from the straight line, so that the angle θ(s) between êx and t(s) is small (θ(s) � 1). The moment
transmitted along the rod is M(s) = Bθ′(s) (Eq. (2.18)). The boundary condition is M(0) = M(L) =
0, and the moment evolves according to Eq. (2.20):

M ′(s) = −([cos(θ)êx + sin(θ)êy]× [−F êx]) · êz = −F sin(θ(s)) ' −Fθ(s). (2.22)

We thus get a closed equation for θ(s):

θ′′(s) = −F
B
θ(s). (2.23)

This equation is solved by θ(s) = cos(ks) if k =
√

F
B = πn

L , where n is an integer. The smallest force
for which there is a solution corresponds to n = 1:

Fc =
π2B

L2
. (2.24)

2.4.2 Scaling analysis at imposed deformation

Here we assume that the rod is compressed by a length ∆L, corresponding to a compressive strain
ε = ∆L/L. The elastic energy per unit length of the compressed rod is

Ucomp ∼ Y ε2, (2.25)

where Y = Et2 is the stretching modulus of the rod. The compressive force associated to a compression
ε is F = Y ε.

We want to estimate the energy of a buckled rod, where the “compression” ε is accomodated by
buckling instead of compression of the material. The vertical displacement H of the center of the rod
should satisfy

ε ∼ H2

L2
(2.26)
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(the arclength of a segment of a curve h(x) is given by
√

1 + h′(x)2δx ' (1+ 1
2h
′(x)2)δx if |h′(x)| � 1,

and here h′ ∼ H/L). The curvature is R−1 = h′′(x) ∼ H/L2. The bending energy per unit length is
thus

Ubend ∼
B

R2
∼ BH2

L4
∼ Bε

L2
. (2.27)

The bending energy is smaller than the stretching energy for

ε > εc ∼
B

Y L2
∼ t2

L2
, (2.28)

which corresponds to a compressive force Fc ∼ Y εc ∼ B/L2.

Another way to arrive at the result is to say that a compressive force F corresponds to the energy
Ucomp = −Fε, which should be compared to Ubend.

Note that the critical displacement is ∆Lc = Lεc ∼ t2/L� t: it is much smaller than the thickness
of the rod. For a sheet of paper, L ∼ 30 cm, t ∼ 100 µm, we get ∆Lc ∼ 30 nm! This separation of
length scales (∆Lc � L) supports the inextensible rod model.

2.5 Bending of plates

Here we should use a plane strain condition, εiz = 0. Indeed using a plane stress condition leads to
εzz = −νεxx = εyy = −ν y−y0R = ∂zuz. This requires a strain of the form uz = −νz y−y0R , which may be
large for a wide sheet.

We adapt the calculation of Sec. 2.2 with this condition. We get the same elongation

εxx =
∆y

R
=
y − y0

R
. (2.29)

From σyy = 0 and Hooke’s law with εzz = 0, we get εyy = − ν
1−ν εxx. Then Hooke’s law gives

σxx =
E

1− ν2
εxx, (2.30)

hence the volumic energy is now

e =
E(y − y0)2

2(1− ν2)R2
. (2.31)

The difference with the previous calculation is just this factor 1/(1− ν2) in the energy.

Using the bending modulus of a rectangular rod (Eq. (2.15)), we get the bending modulus per unit
width of a sheet of thickness t:

B =
Et3

12(1− ν2)
. (2.32)

2.6 Buckling on a foundation, wrinkling, folding

2.6.1 Wrinkling

2.6.1.1 Energetic approach

We consider the buckling of a compressed film lying on top of a liquid (typically at a water-air interface).
Upon buckling, fluid has to be displaced, which costs gravitational energy. As a consequence, the
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“wavelength” is not set by the length of the film, as with Euler buckling, but by a competition of
bending and gravity, leading to a wrinkle pattern, which we characterize here.

A simple wrinkle pattern (with parallel and regular wrinkles) is characterized by the amplitude A
of the wrinkles and their wavelength λ. The typical curvature is R−1 ∼ A/λ2, so that the bending
energy per unit area is

Ubend ∼
BA2

λ4
, (2.33)

On the other hand, it takes gravitational energy to displace liquid:

Ugrav ∼ ρgA2, (2.34)

where ρ is the density difference between the two phases (below and above the sheet) and g is the
gravitational acceleration. The compression is

ε ∼ A2

λ2
. (2.35)

First, we assume that the compression is imposed: Eq. (2.35) is a slaving condition between the
amplitude and the wavelength. Cancelling the amplitude in the energies, we get Ubend ∼ Bε/λ2, and
Ugrav ∼ ρgελ2. The total energy is minimal when these two energies are comparable, leading to

λ ∼
(
B

ρg

)1/4

. (2.36)

Note that the wavelength does not depend on the compression. This length may be refered to as the
bendo-gravity length. The corresponding energy is

Ubendo−grav ∼ ε
√
Bρg. (2.37)

This analysis is very common to determine how the wavelength depends on the parameters of
the problem. Small wavelengths are usually penalized by the bending energy. On the contrary, many
mechanisms can penalize large amplitudes, and thus large wavelengths via the slaving condition (2.35);
they lead to the energy U ∼ KA2, where K is the “effective substrate stiffness”. The origin can be
gravity, elasticity of the substrate [Brau et al., 2011], or two-dimensional effects discussed in Sec. 4.2.1.2:
tension or curvature in the transverse direction [Cerda and Mahadevan, 2003, Paulsen et al., 2016].
The resulting wavelength is thus

λ ∼
(
B

K

)1/4

. (2.38)

If we assume a compressive stress σ (we take σ > 0 for a compressive stress here), with an additional
energy

Ucomp ∼ −σε. (2.39)

Wrinkles are favored when
σ > σc ∼

√
Bρg. (2.40)

This is just Euler buckling with a characteristic length set by λ instead of L.
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2.6.1.2 Stability analysis

We can go beyond scaling analysis to get the buckling threshold. If the height of the film is given by
h(x), to lowest order in h the energy is given by

U =
1

2

∫ [
Bh′′(x)2 + ρgh(x)2 − σh′(x)2

]
dx. (2.41)

The corresponding Euler-Lagrange equation is

Bh(4)(x) + σh′′(x) + ρgh(x) = 0. (2.42)

We look for a harmonic solution, h(x) = A cos(kx). The equation for k is

Bk4 − σk2 + ρg = 0. (2.43)

It has a solution if σ2 − 4Bρg > 0, hence

σc = 2
√
Bρg. (2.44)

The solution is
k∗ =

(ρg
B

)1/4
, (2.45)

corresponding to the wavelength found above.

2.6.2 Non-linearities, folding

In experiments of elastic sheets or even granular layers [Vella et al., 2004] sitting on top of a liquid,
soon after wrinkles form they give way to a more localized deformation: a fold [Pocivavsek et al., 2008].

This phenomenon can be undestood first from a simple scaling analysis. The total energy of the
wrinkled state obtained upon compression of a sheet of length L by a length ∆ = εL is (Eq. (2.37)):

Uwr ∼ ∆
√
Bρg. (2.46)

On the other hand, an antisymmetric fold with two loops of size ` can take any amount of excess length
with an energy `[B`−2 + ρg`2] [Démery et al., 2014], leading to

Ufold ∼ λ
√
Bρg (2.47)

after optimizing over `, where λ is the bendo-gravity length, Eq. (2.36). Forming a fold is thus
energetically favorable for ∆ > λ, which occurs very quickly in long sheets.

To go beyond the scaling analysis, we can write the exact form of the energy associated to this
problem. Denoting s the arclength along the sheet and φ(s) the angle between the sheet and an
horizontal plane, the energy is

U =
1

2

∫ [
Bφ′(s)2 + ρgh(s)2 cos(φ(s))

]
ds. (2.48)

To be able to solve this problem using variational calculus, we should incorporate the relation between
h(s) and φ(s), h′(s) = sin(φ(s)), and the expression of the compressed length ∆ =

∫
[1− cos(φ(s))]ds.

The functional to minimize is thus

I[h, φ] =

∫ [
B

2
φ′(s)2 +

ρg

2
h(s)2 cos(φ(s))− σ[1− cos(φ(s))]−Q(s)[h′(s)− sin(φ(s))]

]
ds. (2.49)
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Expanding to order h2 and φ2, we recover the linear equations of the previous section. The lowest non-
linear order is obtained by expanding up to h4; there the solution minimizing the energy is a modulated
sinusoïd, representing localization with a characteristic length that is infinite at the buckling threshold
and decreases after the threshold [Audoly, 2011]. This problem also admits an exact solution [Diamant
and Witten, 2011]:

φ(s) = 4 arctan

(
κ sin(ks)

k cosh(κs)

)
, (2.50)

where k =
√

2 + σ/2 and κ =
√

2− σ/2 in dimensionless form (lengths rescaled by λ and energies by
λ
√
Bρg). Close to the transition κ� 1, this is a modulated sinusoid and the width of the modulation

is κ−1.

When the film rests on a gel instead of a liquid, the non-linearities of the substrate lead to period
doubling [Brau et al., 2011]. Note that here the buckling of the film is obtained by bending the gel-film
system.

2.7 Elasto-capillary phenomena

When solids are in contact with liquid interfaces, the surface tension γ of the interface can deform the
solid. The lengthscale emerging from comparing the surface tension with the elasticity of the solid, set
by its Young’s modulus E, is the elasto-capillary length

`EC =
γ

E
. (2.51)

For an air-water interface γ ' 72 mN m−1, and for a very soft gel E ∼ 1 kPa, so that `EC ∼ 0.1 mm.
This is small but it can be observed easily [Style et al., 2013]. For stiffer solids the elasto-capillary
length is in the nanometer range.

Liquid interfaces can instead easily deform slender bodies such as sheets. Assuming that the surface
tension is too small to stretch the sheet (γ � Y = Et), the relevant lengthscale is the bendo-capillary
length

`BC =

√
B

γ
∼

√
t3

`EC
. (2.52)

This length is the typical radius of curvature that surface tension can generate; this also means that
sheets longer than `BC can be bent, while sheets smaller than `BC cannot. Surface tension can thus be
used to create three dimensional structures from flat sheets: this is the so-called “capillary origami” [Py
et al., 2007]. In this example, t ' 60 µm, E ∼ 2 MPa (PDMS), so that `BC ∼ 0.7 mm.

More generally, surface tension is a convenient way to apply controlled loads to sheets to investigate
their mechanical properties [Roman and Bico, 2010, Huang et al., 2007].



Chapter 3

Rods

3.1 Geometry

In this section we describe how to parametrize the geometry of an inextensible rod.

To each point of the centerline (the line that remains inextensible when the rod is deformed),
identified by the curvilinear coordinate s, we attach the orthogonal material frame (di(s))1≤i≤3. We
take d3(s) to be the vector tangent to the centerline: d3(s) = R′(s), where R(s) describes the position
of the centerline. The other vectors d1(s) and d2(s) are in the plane of a cross-section.

The deformation of the rod is described by the evolution of this frame along the rod. The orthog-
onality of the frame, di(s) · dj(s) = δi,j , imposes that

d′i · di = 0, (3.1)
d′i · dj = −di · d′j . (3.2)

Hence there exists functions κ(1)(s), κ(2)(s) and τ(s) such that

d′1 = τd2 − κ(2)d3, (3.3)

d′2 = −τd1 + κ(1)d3, (3.4)

d′3 = κ(2)d1 − κ(1)d2. (3.5)

τ is the twist, κ(i) is the bending in the direction i ∈ {1, 2}. These equations can be rewritten by
introducing the Darboux vector

Ω = κ(1)d1 + κ(2)d2 + τd3; (3.6)

they become simply
d′i = Ω× di. (3.7)

The material frame used here is not the same as the Serret-Frenet frame which is defined for a
curve R(s) but does not distinguish the bending directions and does not consider the physical twist.

3.2 Twist of a rod

For a more detailed calculation see [Audoly and Pomeau, 2010, Sec. 3.4].

We consider a rod with a twist τ : the cross section rotates along the center-line with a “pulsation”
τ with the curvilinear coordinate s. On dimensional grounds, we expect an energy per unit length
U/L ∼ Jτ2, where J ∼ Et4.

15
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We assume that the centerline is the z-axis (so that s = z) and use (x, y) as the material coordinates
in the plane of the cross-section. Since there is an helicoidal symmetry, we only have to describe the
deformation of the cross-section at z = 0. At order 1 in τ , it reduces to

R(x, y, 0) =

 x
y

Z(x, y)

 . (3.8)

The displacements parallel to the cross section vanish at this order. The cross-section at z is then
given by

R(x, y, z) =

x cos(τz)− y sin(τz)
y cos(τz) + x sin(τz)

z + Z(x, y)

 . (3.9)

The non-zero components of the strain field are

εxz =
1

2
(∂xZ − τy), (3.10)

εyz =
1

2
(∂yZ + τx). (3.11)

Since the strain tensor is traceless, it is proportional to the stress tensor:

σij =
E

1 + ν
εij . (3.12)

The equilibrium condition for the stress is ∂iσij = 0, hence for the strain ∂xεxz +∂yεyz = 0, leading
to

∇2Z = 0. (3.13)

There is a stress free boundary condition, niσij = 0 on the sides of the rod, where n is the normal to
the edge of the rod. This gives a source term for Z(x, y):

n · ∇Z = τ(n× r) · ez, (3.14)

where r = (x, y). We indeed find that Z is proportional to τ . We can introduce normalized quantities
Z̄ = Z/τ , ε̄ = ε/τ ; they satisfy

ε̄xz =
1

2
(∂xZ̄ − y), (3.15)

ε̄yz =
1

2
(∂yZ̄ + x), (3.16)

∇2Z̄ = 0, (3.17)
n · ∇Z̄ = (n× r) · ez, (3.18)

the last equation being satisfied on the boundary.

The twist energy (per unit length) is then given by

U

L
=

E

1 + ν

∫
S

(ε2xz + ε2yz)dxdy =
Eτ2

1 + ν

∫
S

(ε̄2xz + ε̄2yz)dxdy =
Jτ2

2
, (3.19)

where J is the torsion constant.

For a circular cross-section with radius r, n ‖ r so that Z = 0 and

J =
E

2(1 + ν)

∫
S

(x2 + y2)dxdy =
πEr4

4(1 + ν)
. (3.20)
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As for the bending, we can compute the moment along êz transmitted through a cross-section:

M =

∫
S

[xσyz − yσxz]dxdy (3.21)

=
Eτ

1 + ν

∫
S

[xε̄yz − yε̄xz]dxdy (3.22)

= Jτ − Eτ

1 + ν

∫
S

(ε̄xz∂xZ̄ + ε̄yz∂yZ̄)dxdy (3.23)

= Jτ. (3.24)

We have used Eqs. (3.15, 3.16), integrated by parts and used the equations of equilibrium.

3.3 Energy and equilibrium equations

The energy of a deformed rod can thus be written

U =
1

2

∫ [
B1κ

(1)(s)2 +B2κ
(2)(s)2 + Jτ(s)2

]
ds, (3.25)

where the bending moduli B1 and B2 have been computed in Sec. 2.2 and the twist modulus J has
been computed in Sec. 3.2.

The moment exerted through a cross-section of the rod is

M(s) = B1κ
(1)(s)d1(s) +B2κ

(2)(s)d2(s) + Jτ(s)d3(s). (3.26)

Now consider a rod submitted to a linear density of forces f(s) and moments q(s), as before, the
balance of forces and moments on the portion [s, s+ δs] of the rod give

F ′(s) + f(s) = 0,

M ′(s) + d3(s)× F (s) + q(s) = 0.

(3.27)
(3.28)

These equations can be obtained from the variation of the energy (3.25), but the calculation is
cumbersome due to the way κ(1), κ(2) and τ depend on the configuration of the rod [Audoly and
Pomeau, 2010, Sec. 3.6].

3.4 Invariants

We will derive invariants for an isotropic (B1 = B2 = B) rod with f(s) = 0 and q(s) = 0. As a
consequence, F is a constant and the equation for the moment is

M ′(s) + d3(s)× F = 0. (3.29)

Taking the scalar product with F , we get

0 = M ′(s) · F + [d3(s)× F ] · F =
d

ds
[M(s) · F ] : (3.30)

this is the first invariant:
d

ds
[F ·M(s)] = 0. (3.31)
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Taking the scalar product with d3(s), we get

0 = M ′(s) · d3(s) =
d

ds
[M(s) · d3(s)]−M(s) · d′3(s). (3.32)

On one hand, from Eq. (3.26),

M(s) = B[κ(1)(s)d1(s) + κ(2)(s)d2(s)] + Jτ(s)d3(s) = BΩ(s) + α(s)d3(s); (3.33)

on the other hand, d′3(s) = Ω(s)× d3(s), hence

M(s) · d′3(s) = [BΩ(s) + α(s)d3(s)] · [Ω(s)× d3(s)] = 0. (3.34)

We thus have a second invariant
d

ds
[d3(s) ·M(s)] = 0. (3.35)

The last invariant is obtained by taking the scalar product with Ω(s):

0 = M ′(s) ·Ω(s) + [d3(s)× F ] ·Ω(s). (3.36)

From the expression of the moment with the curvatures and d′i = Ω× di, we see that

M ′(s) ·Ω(s) = B
[
κ(1)′(s)κ(1)(s) + κ(2)′(s)κ(2)(s)

]
+ Jτ ′(s)τ(s) =

1

2

d

ds
[M(s) ·Ω(s)]. (3.37)

We have for the other term

[d3(s)× F ] ·Ω(s) = [Ω(s)× d3(s)] · F = d′3(s) · F =
d

ds
[d3(s) · F ]. (3.38)

This gives the invariant
d

ds

[
1

2
Ω(s) ·M(s) + F · d3(s)

]
= 0. (3.39)

3.5 Localized helix

We consider an infinite isotropic rod (initially along ez) submitted to a tension T (F = Tez) and a
moment M (M(±∞) = Mez). We denote d3(s) = t(s) and assume that the rod is straight at infinity
(t(±∞) = ez). We compute the shape of this rod.

We start by computing the three invariants:

F ·M = Tez ·M = TM, (3.40)
t ·M = M, (3.41)

1

2
Ω ·M + F · t =

M2

2J
+ T, (3.42)

since at infinity the deformation of the rod is pure twist.

Then we describe the shape of the rod. We use spherical coordinates to represent the tangent
vector t(s):

t(s) = sin(θ(s))er(ψ(s)) + cos(θ(s))ez. (3.43)

The derivative is
t′ = ψ′ sin(θ)eψ + θ′[cos(θ)er(ψ)− sin(θ)ez]. (3.44)
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We have to write the vectors Ω(s) and M(s) as a function of θ(s) and ψ(s). First, since t′(s) = Ω× t
and Ω · t = τ , we see by a quick calculation in the base (d1,d2, t) that

Ω = t× t′ + τt. (3.45)

The moment is thus
M = Bt× t′ + Jτt. (3.46)

In the base (er, eψ, ez), the vector product reads

t× t′ =

sin(θ)
0

cos(θ)

×
 θ′ cos(θ)
ψ′ sin(θ)
−θ′ sin(θ)

 =

−ψ′ sin(θ) cos(θ)
θ′

ψ′ sin(θ)2

 . (3.47)

Let’s now use the invariants. The simplest to use is t ·M = M , leading to

Jτ(s) = M. (3.48)

ez ·M = M leads to Bψ′ sin(θ)2 + Jτ cos(θ) = M , and with the previous result,

ψ′ =
M

B

1− cos(θ)

sin(θ)2
. (3.49)

For the last one, Ω ·M = B|t× t′|2 + Jτ2; using |t× t′|2 = t′2 = θ′2 +ψ′2 sin(θ)2 and Jτ = M , we get

B

2

[
θ′2 + ψ′2 sin(θ)2

]
= T [1− cos(θ)]. (3.50)

Combining this relation with the expression of ψ′, we get

θ′2

2
+
T

B
Vγ(θ) = 0, (3.51)

where

γ =
M2

4BT
(3.52)

and

Vγ(θ) = 2γ

[
1− cos(θ)

sin(θ)

]2

− 1 + cos(θ). (3.53)

This describes the trajectory of an inertial particle with 0 energy in the potential Vγ(θ), with the
condition θ(±∞) = 0.

The expansion of the potential (Fig. 3.1) around 0 is

Vγ(θ) =
γ − 1

2
θ2 +O(θ4). (3.54)

If γ > γc = 1, the position θ = 0 is a stable minimum: the rod remains straight. If γ < γc the position
θ = 0 is unstable: the rod buckles.

For γ < γc we can obtain an analytical solution. Changing variable for u = cos(θ), we have

u′2

2
+
T

B
(1− u)2(2γ − 1− u) = 0. (3.55)
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Figure 3.1: Left: potential Vγ(θ) of the localized helix for two values of γ. Right: solution θ(s) for
γ = 0.6.

Figure 3.2: Rendering of the localized helix for γ = 0.6.

Further changing to v such that 2γ − 1− u = −2(1− γ)v, the equation is

v′2

2
=

2(1− γ)T

B
v(1− v)2. (3.56)

Noticing that tanh′ = 1− tanh2, so that [(tanh2)′]2 = 4 tanh2(1− tanh2)2, the solution is

v(s) = tanh

(√
(1− γ)T

B
(s− s0)

)2

, (3.57)

where s0 is the “center” of the helix (the problem is invariant by translation along s). For θ(s) and
u(s), the solution reads

u(s) = cos(θ(s)) = 2γ − 1 + 2(1− γ) tanh

(√
(1− γ)T

B
(s− s0)

)2

. (3.58)

We note that θ(s)→ 0 as s→ ±∞, as expected. A solution for γ = 0.6 is shown on Fig. 3.2.

This localized pattern is reminiscent of the wrinkle localization into a fold discussed in Sec. 2.6.2.
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Sheets

4.1 Geometry and mechanics of sheets

4.1.1 Stretching and bending moduli

Consider a sheet submitted to a strain εxx in the x direction, with a vanishing stress in the y direction,
σyy = 0. With the Hooke’s law for plane stress, Eq. (2.2) (here σzz = 0), from σyy = 0 we get
εyy = −νεxx, hence

σxx =
E

1 + ν

[
εxx +

ν

1− ν
(εxx + εyy)

]
= Eεxx. (4.1)

The energy density integrated over the thickness is thus

e =
t

2
σxxεxx =

Et

2
ε2xx, (4.2)

which defines the stretching modulus
Y = Et. (4.3)

The case of bending has been adressed in Sec. 2.5: imposing a curvature κx = 1/Rx in the x
direction leads to an energy per unit area

e =
B

2
κ2
x, (4.4)

where the bending modulus is (Eq. (2.32)):

B =
Et3

12(1− ν2)
. (4.5)

4.1.2 Gauss theorema egregium

4.1.2.1 Theorem

We consider a sheet with rest configuration

R0(x, y) =

xy
0

 . (4.6)

21
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The reference metric g0
ij = ∂iR

0 · ∂jR0 is simply

g0 =

(
1 0
0 1

)
. (4.7)

We consider a deformation of the sheet into

R(x, y) =

x+ u(x, y)
y + v(x, y)
w(x, y)

 . (4.8)

The metric is now

g =

(
(1 + ux)2 + v2

x + w2
x (1 + ux)uy + vx(1 + vy) + wxwy

(1 + ux)uy + vx(1 + vy) + wxwy u2
y + (1 + vy)

2 + w2
y

)
, (4.9)

where we denote the partial derivatives with indices: ∂xu = ux, etc.

We consider small deformations, and we want to expand to the lowest non trivial order in the
displacements u, v and w. We see in the term gxx that the term ux compares to w2

x, thus we retain
terms of order two in w and one in u. This gives for the strain

ε =
g − g0

2
=

(
ux + w2

x
2

uy+vx+wxwy

2
uy+vx+wxwy

2 vy +
w2

y

2

)
. (4.10)

We are interested in the curvature of the sheet, which is encoded in the out of plane displacement
w. To get rid of the in plane displacement, we consider 2∂x∂yεxy − ∂2

yεxx − ∂2
xεyy:

∂x∂yεxy =
1

2

(
uxyy + vxxy + wxxywy + w2

xy + wxxwyy + wxwxyy
)
, (4.11)

∂2
yεxx = uxyy + w2

xy + wxwxyy, (4.12)

∂2
xεyy = vxxy + w2

xy + wywxxy. (4.13)

Hence
2∂x∂yεxy − ∂2

yεxx − ∂2
xεyy = wxxwyy − w2

xy = det(wij). (4.14)

This is Gauss’ theorema egregrium (remarkable theorem).

4.1.2.2 Gauss curvature

The right hand side is the Gauss curvature κG. The tensor wij is symmetric, hence there is an
orthogonormal base where it is diagonal; choosing this base, w reads

w(x, y) =
x2

2Rx
+

y2

2Ry
, (4.15)

where Rx and Ry are the two principal radii of curvature (κi = 1/Ri is the corresponding curvature).
Then

wαβ =

(
R−1
x 0
0 R−1

y

)
(4.16)

and
κG = det(wij) =

1

RxRy
. (4.17)

The main implication of this theorem is that if the Gauss curvature is non-zero (the sheet is bent
in two directions), the strain cannot vanish. Since bending is energetically cheap and stretching is
expansive, this is some kind of geometric frustration: bending in direction x is cheap, bending in
direction y is also cheap, but bending in the two directions is expensive.
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4.1.2.3 Application to the sheet-on-sphere adhesion

By dimensional arguments, the “geometrical strain” required to apply a Gauss curvature κG to a sheet
of lateral size L is thus

εGauss ∼ κGL2. (4.18)

The stretching energy of a flat disc of radius L on a sphere of radius R� L [Majidi and Fearing, 2008],
where κG = R−2 is

Ustretch ∼ Y L2ε2Gauss ∼ Y κ2
GL

6 ∼ Y L6

R4
. (4.19)

The bending energy in this situation is

Ubend ∼
BL2

R2
∼ Y t2L2

R2
. (4.20)

With an adhesion energy Γ per unit area, if the sheet is sufficiently thin (R > `BC =
√
B/γ), the

stretching energy sets the threshold for delamination, which is thus [Hure et al., 2011]

ΓL2 ∼ Y L6

R4
. (4.21)

4.1.2.4 3d shape design by prescribing the metric

Gauss’s theorem gives a relation between the strain and the out-of-plane deformation. The strain being
given as the difference between the actual and the target metric, this is actually a relation between the
out-of-plane displacement and the metric. Prescribing a non-flat metric g0, out-of-plane displacement
may be needed have a vanishing strain.

Prescribing a non-flat metric can be done by using gels that have a non-uniform response to a
solvent [Klein et al., 2007, Sharon and Efrati, 2010] or a temperature change [Kim et al., 2012].

Note that the mapping between the metric and the out-of-plane displacement is not straightforward:
a torn plastic sheet has a metric of the form [Marder et al., 2003]

g0 =

(
1 + αe−y/ξ 0

0 1

)
, (4.22)

where x ∈ R and y ≥ 0. The line y = 0 being compressed in the flat state (εxx = 1
2(gxx−g0

xx) = −α/2),
it buckles. Surprisingly, the buckling pattern is fractal [Sharon et al., 2002].

Finally, incompatibility between the target metric and the “spontaneous curvature” of the material
can lead to specific buckling patterns, which occur for instance in plants [Armon et al., 2011].

4.1.3 Föppl-von Kármán equations

The in-plane strain εij is given as a function of the displacements u, v and w (in and out of plane) in
Eq. (4.10), and the in-plane stress σij can be deduced using the Hooke’s law in 2d using plane stress
conditions, Eq. (2.2). For plates, it is easier to use the planar stress instead of the volumic stress, hence
the stretching modulus Y = Et has to be used instead of the Youngs modulus in Hooke’s law:

σij =
Y

1 + ν

(
εij +

ν

1− ν
ε
(2)
kk δij

)
. (4.23)

The in-plane force balance is analogous to the 3d force balance:

∂iσij = 0. (4.24)
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For the out-of-plane force balance, a direct derivation is cumbersome [Audoly and Pomeau, 2010,
Secs. 6.4 and 6.5] so we resort to the equilibrium equation of a rod derived in Sec. 2.3, that we
generalize to a plate. We consider a rod that is nearly straight, so that we can replace s by x, and
the height w(x) is related to the angle θ(x) through θ(x) = w′(x). The moment exerted through the
rod is thus M(x) = Bθ′(x) = Bw′′(x), where the bending moment is the bending moment of a plate,
Eq. (2.32). The tangent vector is

t(x) =

(
1

w′(x)

)
, (4.25)

and the force is given by the in-plane tension:

F (x) =

(
σxx(x)

0

)
. (4.26)

The equation for the equilibrium of momentum is thus

Bw′′′(x)− w′(x)σxx(x) = 0. (4.27)

Deriving, we arrive at
B∂4

xw = ∂x(σxx∂xw). (4.28)

The two-dimensional generalization is

B∇4w = ∂i(σij∂jw), (4.29)

where ∇4 = (∂2
x + ∂2

y)2. The derivative on the right hand side can be developped, and using the
in-plane force balance we get ∂i(σij∂jw) = σij∂i∂jw.

Finally, we obtain the Föppl-von Kármán equations:

∂iσij = 0,

B∇4w − σij∂i∂jw = 0.

(4.30)

(4.31)

External forces can be added in these equations. For instance, if a pressure P is applied below the
plate the out-of-plane equation becomes

B∇4w − σij∂i∂jw = P. (4.32)

Note that without the bending modulus, this equation is a generalization of the Laplace law, −γ∇2w =
P .

The Föppl-von Kármán equations can be derived from the elastic energy that contains stretching
and bending contributions. However, the exact form of the energy is not straightforward [Audoly
and Pomeau, 2010, Sec. 6.6], and in general the scaling of the two contributions is enough to get the
required scalings.

We have given here the Föppl-von Kármán equations for small deviations to a flat configuration.
However, when there are large deviations to a flat configuration, one has to use a covariant expression
of these equations [Dias et al., 2011]. For instance, the derivatives present in the Föppl-von Kármán
equations have to be replaced by covariant derivatives, based on the metric of the sheet. This formalism
has proven useful to compute the stress in a stretched and twisted ribbon [Chopin et al., 2015].

4.1.4 Reduced models

The Föppl-von Kármán equations are non-linear and may thus be difficult to solve. For this reason it
is always useful to have reduced models to address situations where some effects are irrelevant.
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4.1.4.1 Membrane model

Neglecting the bending contribution in Eq. (4.31), we obtain the membrane model. However, we know
from the study of buckling (Sec. 2.4 and Sec. 2.6) that without bending modulus there is no resistance
to compression, meaning that any level of compression is relaxed by tiny wrinkles, which cannot be
described by the membrane model. The absence of compressive stress should be added to the equations:

σii ≥ 0, (4.33)

for any direction i.

4.1.4.2 Geometric model

An even further simplification if the loading is too weak to stretch the sheet is to consider the sheet
as inextensible. This can be called a “geometric” model, in the sense that there is no elastic modulus
anymore.

For example, a geometric model has been used to understand the shape of a Mylar balloon [Paulsen,
1994]; we quickly review its approach here. A Mylar balloon is made of two flat discs glued together
at the edges, and then inflated. Assuming that Mylar is inextensible, once under pressure, the balloon
takes the shape that maximizes its volume under the constraint of inextensibility.

Taking a cut of the balloon along its symmetry axis, a quarter of the shape can be described by a
function y(x) ≥ 0 for 0 ≤ x ≤ a, where a is the radius of the inflated balloon, such that y(a) = 0. The
volume V of the balloon and half length of a meridian R (the radius of the disks) are given by

V = 4π

∫ a

0
xy(x)dx, (4.34)

R =

∫ a

0

√
1 + y′(x)2dx (4.35)

The functionnal to minimize is thus

I[y] =

∫ a

0

[
xy(x)− λ

√
1 + y′(x)2

]
dx, (4.36)

where λ is a Lagrange multiplier and we have factored out 4π.

The corresponding Euler-Lagrange equation reads

− λ d

dx

[
y′(x)√

1 + y′(x)2

]
= x. (4.37)

It can be shown rigorously that the boundary conditions are y′(0) = 0, y′(a) = −∞. Integrating the
above equation between 0 and x leads to

y′(x)√
1 + y′(x)2

= −x
2

a2
, (4.38)

Where we have used y′(a) = −∞ to show that λ = a2/2. This relation can be inverted, leading to

y′(x) = − x2

√
a4 − x4

. (4.39)
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This completely defines the solution through an elliptic integral:

y(x) =

∫ a

x

x′2√
a4 − x′4

dx′. (4.40)

This approach is purely geometric and bypasses the complex pattern of the wrinkles and “crumples”
that appear in these balloons. The calculation could also be done using mechanical arguments, such as
the ones Taylor used to compute the optimal shape of a parachute [Taylor, 1919]. Quite surprisingly,
the parachute has the same shape as the balloon.

4.1.5 Numerical simulations

A minimal numerical model for elastic sheets has been introduced by Seung and Nelson [1988]. In this
model, the sheet consists in a triangular lattice of “beads” attached by springs; this generates a stretch-
ing modulus. A bending modulus is obtained with an energy penalty for the angle between neighboring
facets. We first introduce this model and then compute the elastic moduli of the corresponding sheet.

Denoting Ra the position of the bead a, the stretching energy is given by

Ustr =
k

2

∑
〈a,b〉

(|Ra −Rb| − `)2 , (4.41)

where k is the spring constant, ` is the rest length of the springs, and 〈a, b〉 are nearest neighbours.
Denoting n̂α the unit normal to the facet α, the bending energy is

Ubend = κ
∑
〈α,β〉

(1− n̂α · n̂β). (4.42)

We can compute the effective properties of this sheet. If ra denotes the initial position of the bead
a, then

(Ra −Rb)
2 ' gij(ria − rib)(r

j
a − rjb) = `2

[
1 + 2εijd

id̂j
]
, (4.43)

where ra − rb = `d̂. Finally,
|Ra −Rb| − ` ' `εijdid̂j . (4.44)

We can now sum the square over the three sides of a facet, where d̂ = (1, 0),
(

1
2 ,
√

3
2

)
or
(

1
2 ,−

√
3

2

)
;

after a few lines we get
3∑

µ=1

(
εijd

i
µd̂

j
µ

)2
=

3

4
εijεij +

3

8
(εkk)

2. (4.45)

With the area of a facet,
√

3`2/4, and taking into account the fact that the bonds are shared between
two facets, we get an energy density

Ustr =

√
3k

4

[
εijεij +

1

2
(εkk)

2

]
. (4.46)

This should be compared to the continuous energy density

Ustr =
1

2
εijσij =

Y

2(1 + ν)

[
εijεij +

ν

1− ν
(εkk)

2

]
. (4.47)
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We get

Y =
2√
3
k, (4.48)

ν =
1

3
. (4.49)

We note that the Poisson ratio is set by the geometry of the lattice. This could have been expected
because there was no dimensionless parameter in the model.

For the bending energy we use a simple derivation, where the sheet is bent in a single direction, so
that only the bonds “(1, 0)” are bent by an angle θ � 1. The distance between two lines of bending is
`′ =

√
3`/2, and the curvature is c = θ/`′. The energy of a single bond is κ(1− n̂α · n̂β) ' κθ2/2. The

density of these bonds is (``′)−1, hence the energy density is

Ubend =
κθ2

2``′
=

√
3

4
κc2 =

Bc2

2
, (4.50)

leading to the bending modulus

B =

√
3

2
κ. (4.51)

Note that without the prefactors, the relations could have been obtained by simple dimensionnal
analysis: Y ∼ k, B ∼ κ. The effective thickness is given by t ∼

√
B/Y ∼

√
κ/k.

4.2 Instabilities, pattern formation

4.2.1 Wrinkles

Wrinkles are a special kind of buckling pattern forming in a variety of situations such as a poked
inflated balloon [Vella et al., 2011], a hand streched band [Cerda and Mahadevan, 2003], or a drop
supporting sheet on a liquid interface [Huang et al., 2007]. The main questions regarding wrinkles are:
When do they form? What are their wavelength and amplitude?

As in the one dimensional case, there are two main approaches: considering the system close to
the instability threshold or far from the threshold, deep in the buckled state. Close to the threshold,
we typically perform a linear stability analysis, leading to the threshold and the wavelength. The
stability analysis is performed around a well-known state, and assumes that the wrinkles are a small
perturbation to this state (displacement and stress fields). Far from the threshold, there is no reference
state to expand around, so additional inputs are needed.

First we see how these approaches organize on a simple problem, and then we discuss qualitatively
other phenomena.

4.2.1.1 Lamé problem

Setup. The “Lamé setup” is shown Fig. 4.1. The idea is to apply different tensions on the inner and
outer edges (Tin and Tout) of an annular sheet. To do so, the sheet is placed at a water-air interface and
a surfactant is added outside of the annulus, the tension is thus lower on the outer edge (Tout < Tin).
Moving a barrier allows to compress the surfactant layer and thus to lower the outer surface tension.
This setup has been developed by Piñeirua et al. [2013] and used with thinner sheets by Paulsen et al.
[2017]. Géminard et al. [2004] have used a setup with the same geometry but applying loads differently.
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Figure 4.1: Lamé setup

The main parameters are the inner and outer radii Rin and Rout, and the inner and outer surface
tension Tin and Tout. In experiments, Tout is lowered. At some point, wrinkles form near the inner
edge and expand.

Flat state. We start by computing the displacement and stress field in the flat state. Due to the
axial symmetry of the problem, the displacement is radial and depends on the distance r to the center
of the annulus, we denote it u(r). The displacement is the function that we have to determine. The
strain in the radial and azimuthal directions can easily be computed:

εrr(r) = ∂ru(r), (4.52)

εθθ(r) =
u(r)

r
. (4.53)

It is related to the stress through Hooke’s law (2.2).

The force balance equation can be determined either by considering the forces on a small piece of
sheet or by using covariant elasticity with the metric corresponding to the polar coordinates. Due to
the symmetry of the problem, it provides an equation only in the direction r:

∂r[rσrr(r)] = σθθ. (4.54)

Finally, the boundary conditions are:

σrr(Rin) = Tin, (4.55)
σrr(Rout) = Tout. (4.56)
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The Hooke’s law gives

σrr(r)

E
=
u′(r)

1− ν
+

ν

1− ν2

u(r)

r
, (4.57)

σθθ(r)

E
=

1

1− ν
u(r)

r
+

ν

1− ν2
u′(r). (4.58)

The radial force balance (4.54) thus becomes

∂r
[
ru′(r)

]
=
u(r)

r
. (4.59)

Looking for a solution of the form u(r) = rα, we get α2 = 1, hence

u(r) = Ar +
B

r
. (4.60)

Hence
σrr(r) = E

(
1 + 2ν

1− ν2
A− 1

1− ν2

B

r2

)
= A′ +

B′

r2
. (4.61)

Using the boundary conditions (4.55, 4.56), we obtain

σrr(r) =
R2

outTout −R2
inTin

R2
out −R2

in

+
Tin − Tout

R−2
in −R

−2
out

1

r2
, (4.62)

σθθ(r) =
R2

outTout −R2
inTin

R2
out −R2

in

− Tin − Tout

R−2
in −R

−2
out

1

r2
. (4.63)

where we have used the force balance (4.54) to compute the azimuthal stress. Introducing

T∞ =
R2

outTout −R2
inTin

R2
out −R2

in

< Tin, (4.64)

the stress field can be written as

σrr(r) = T∞ + (Tin − T∞)
R2

in

r2
, (4.65)

σθθ(r) = T∞ − (Tin − T∞)
R2

in

r2
. (4.66)

As σθθ(Rin) = 2T∞ − Tin, the inner edge is under compression for T∞ < Tin/2, and prone to
buckling.

Near threshold. We first consider a narrow annulus, Rout & Rin, so that the azimuthal stress is
almost uniform. Its buckling can be seen as the buckling of a compressed sheet on a liquid, which
has been discussed in Sec. 2.6.1. The threshold is thus σθθ < −2

√
Bρg, and the wavelength should be

given by λ = 2π(ρg/B)1/4; the criterion for the stress can be written

T∞
Tin

<
1

2
− `BC

`c
, (4.67)

where `c =
√
Tin/(ρg) is the capillary length. These predictions have been verified experimen-

tally [Piñeirua et al., 2013]. We have neglected the effect of the meniscus of liquid on the inner
and outer edges, in the one dimensional analysis of Sec. 2.6.1 the sheet was assumed to be infinite in
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the direction perpendicular to the compression. As explained by Piñeirua et al. [2013], this assumption
is valid if the annulus is wider than the capillary length and stiff enough to prevent a cascade at its
edges, an effect that we discuss below.

The arguments for a narrow annulus provide handwavy arguments for a wider annulus. The
threshold for buckling can alternatively obtained by a linear stability analysis, using the out-of-plane
Föppl-von Kármán equation (4.32) [Piñeirua et al., 2013]. Denoting w(r, θ) the vertical displacement
of the sheet, the pressure is given by P = −ρgw and

B∇4w − σrr
(
∂2
rw +

1

r
∂rw

)
− σθθ

1

r2
∂2
θw + ρgw = 0. (4.68)

Looking for a solution of the form w(r, θ) = f(r) sin(mθ), the above equation becomes a fourth order
ODE for f(r). Assuming that the sheet is free of forces and torques at the inner and outer edges
leads four boundary conditions. Generically, the only solution to this problem is f(r) = 0; the linear
stability analysis amounts to look for the value of Tout where a non-zero solution exists. The value
of m leading to the highest value of Tout,c gives the wavelength of the wrinkles, and the form of f(r)
gives their extent.

Far from threshold. We assume that we are far above the buckling threshold and want to determine
the properties of the wrinkles. In this situation the wrinkles substantially modify the stress field; we
take the membrane limit and assume that the wrinkles completely relax the compression: σθθ = 0
where wrinkles are present, and σθθ > 0 without wrinkles (the same condition applies to σrr, but it is
always positive) [Davidovitch et al., 2011].

The annulus is thus separated in two regions: a wrinkled region for Rin < r < W , where σθθ = 0
and a flat region for W < r < Rout, where σθθ > 0. In the wrinkled region, the force balance (4.54)
gives σrr(r) = TinRin/r. In the flat region, the equations are the same as above, and the stress field is
of the form σrr(r) = A+B/r2, σθθ(r) = A−B/r2. The boundary conditions are σrr(W ) = TinRin/W ,
σθθ(W ) = 0, and σrr(Rout) = Tout. The first two equations give B = AW 2 and A = TinRin/(2W ), and
the last equation leads to an equation for x = W/Rout:

x2 + 2αx+ 1 = 0, (4.69)

where
α =

ToutRout

TinRin
. (4.70)

This equation has a real solution x < 1 only if α > 1, which is

x∗ = α−
√
α2 − 1. (4.71)

Note that there is no solution if α < 1.

In the wrinkled region, the amplitude and wavelength of the wrinkles are related by a slaving
condition anologous to the one seen in Sec. 2.6.1 (Eq. (2.35)). Assuming an out of plane displacement
of the form w(r, θ) = f(r) sin(mθ), the relative excess length taken away by the wrinkles at a radius
r is m2f(r)2/(4r2) in the limit of small slopes. This strain should be added to the strain of the flat
state (Eq. (4.53)):

εθθ(r) =
u(r)

r
+
m2f(r)2

4r2
. (4.72)

Given the stress field, we can compute the strain through the Hooke’s law, which gives εrr = σrr/E
and εθθ = −νεrr in the wrinkled zone. The strain field can then be integrated to get u(r), so that we
finally have determined mf(r) through Eq. (4.72).

We do not discuss further the properties of the wrinkles in this setup, and turn to the different
mechanisms that play a role in the selection of the wrinkles wavelength.
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4.2.1.2 Selection of the wavelength

In the case of wrinkling at an air-water interface, the wavelength is set by a balance of bending and
gravity (Sec. 2.6.1). Bending penalizes short wavelengths, while gravity penalizes large amplitudes, and
thus large wavelengths through the slaving condition. In two-dimensionnal settings, other mechanisms
may penalize large amplitudes.

If wrinkles have a finite extent L and are submitted to a tension T , the stretching energy along the
wrinkles is given by

Utens ∼ εT ∼
(
A

L

)2

T. (4.73)

This corresponds to an effective stiffness [Cerda and Mahadevan, 2003]

Ktens =
T

L2
. (4.74)

Wrinkles often occur on curved substrates. If the radius of curvature in the direction parallel to
the wrinkles is R‖, for a profile of the form f(x) = A cos(kx), the strain along the wrinkles at x is
given by ε‖(x) = f(x)/R‖. This leads to an average stretching energy

Ustr ∼ Y
(
A

R‖

)2

, (4.75)

corresponding to an effective stiffness

Kcurv =
Y

R2
‖
. (4.76)

4.2.2 Cascades

When describing the wrinkles that form on a compressed rectangular sheet in Sec. 2.6.1, we have
assumed an infinite system in the direction of the wrinkles. However, the compressed sheet is always
finite, and the capillary force at the edge of the sheet can modify the wrinkle pattern. As described by
Huang et al. [2010], the capillary force favors shorter amplitude and wavelength, leading to a decrease
of the wavelength close to the edge, which is a cascade.

A cascade is also observed on hanging curtains: the wavelength increases from the top to the
bottom. Here we give the general analysis of Vandeparre et al. [2011], which uses the wrinklon, the
transition zone between the wavelengths λ and 2λ, as the building block of a cascade. Considering
that wrinkles with a wavelength λ have an amplitude A such that ε ∼ A2/λ2, the bending energy gain
per unit area to double the wavelength is

Ubend ∼ B
(
A

λ2

)2

∼ Bε

λ2
. (4.77)

Here we have neglected the bending energy along the wrinkles. Changing the wavelength over a length
L generates a strain (A/L)2, and thus a stretching energy per unit area

Ustr ∼ Y
(
A

L

)4

∼ Y ε2λ4

L4
. (4.78)

Balancing these two energies leads to

L ∼ ε1/4t−1/2λ3/2. (4.79)
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We note that we have set Ubend ∼ Ustr, while in principle we should have minimized Ubend + Ustr,
leading to L → ∞; however, this is the energy per unit area, and minimizing Lλ(Ubend + Ustr) gives
the result above.

Denoting x the coordinate along the wrinkles, we can obtain an equation for λ(x):

dλ

dx
' λ

L
∼ ε−1/4t1/2λ−1/2, (4.80)

the solution of which is
λ ∼ ε−1/6t1/3x2/3. (4.81)

This scaling law has been observed for short curtains [Vandeparre et al., 2011].

If a tension σ is imposed along the wrinkles, this tension dominates over the strain induced by the
period doubling if σ � Y (A/L)2. If this is the case, the dominant stretching energy is

Ustr ∼ σ
(
A

L

)2

∼ σελ2

L2
(4.82)

instead of Eq. (4.78). Comparing this energy to the bending energy, we find

L ∼
(
σλ4

B

)1/2

∼
( σ
Y

)1/2 λ2

t
. (4.83)

With the same argument as above, we have

dλ

dx
∼
( σ
Y

)−1/2 t

λ
, (4.84)

and thus
λ ∼

( σ
Y

)−1/4
t1/2x1/2. (4.85)

This scaling has been observed for long curtains, graphene sheets under tension [Vandeparre et al.,
2011], and at the edge of a compressed floating sheet [Huang et al., 2010].

Note that the cascade described here is very different from the cascade observed at the edge of a
torn plastic sheet, where the different wavelength superpose [Sharon et al., 2002, Marder et al., 2003,
Sharon et al., 2007].

4.2.3 Crumples and folds

When wrinkles are curved, the curvature generate a strain that can play a role in the wavelength
selection, as seen in Sec. 4.2.1.2. However, when this curvature is too large the wrinkles are replaced
by “crumples”; they can be seen when a flat circular sheet is placed of a drop with increasing cur-
vature [King et al., 2012], or in an inflated Mylar balloon. The precise shape of the crumples, their
energy, and the critical curvature where they appear are still unknown.

Sharp folds are another pattern that appear upon compression; they have been observed in a
“sheet on drop” experiment [Paulsen et al., 2015] or in the Lamé setup when TinRin > ToutRout (see
Sec. 4.2.1.1) [Piñeirua et al., 2013, Paulsen et al., 2017]. For very thin sheets [Paulsen et al., 2015,
2017], the folds have been shown to arise for geometrical reason: they concentrate excess material,
allowing the sheet to adopt shapes that cannot be achieved with wrinkles.

Up to know, we do not know how to describe the mechanics of crumples and folds. When they
appear, the only way to describe theoretically the morphology of the sheet is to bypass them by using
a model where they are not treated explicitly, such as the reduced models described in Sec. 4.1.4.
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The geometric model described above can be adapted to elasto-capillary problems if a separation
of energy scales is satisfied: if the surface tension (which acts as a load) is too weak to stretch the sheet
(γ � Y ) but much stronger than bending (γ � B/W 2, where W is the size of the sheet), one just
as to minimize the surface energy under the constraint of inextensibility of the sheet and without any
cost for bending. Note that when bending is free, compression is allowed for free by wrinkles, crumples
or folds. This model can describe satisfactorily the surprising shapes that appear in the Lamé and
droplet wrapping experiments [Paulsen et al., 2015, 2017].

4.3 Crumpled sheets

When a sheet is crumpled, a very complex morphology emerges from a very simple loading, confinement
in a sphere [Audoly and Pomeau, 2010, Witten, 2007]. The two main questions about crumpling are:
what is the resulting morphology? What is it mechanical response? We readily notice that there are
stress focuses upon crumpling; as a consequence the plastic limit of the material can be reached easily,
leading to a complex force response.

The complexity involved in the description of crumpled paper appears when trying to put together
the physical ingredients. In order to describe the morphology, we have to use the equations of elasticity,
the Föppl-von Kármán equations, which are non-linear. Another important ingredient for the mor-
phology is self-avoidance: the sheet cannot cross itself. This seemingly simple argument is very difficult
to handle in theoretical descriptions; for instance the exact solution for the sheet on liquid problem is
not valid after self-contact (Sec. 2.6.2). When self-contact is present, friction matters, which impacts
the mechanical response. The mechanical response is also affected by plastic effects; both friction and
plasticity forbid to derive the mechanical response from an energy.

First we study two type of stress focusing singularities that may be relevant in crumpled paper:
conical and ridge singularities. Then we review briefly what can be done experimentally or numerically.

4.3.1 Conical singularities

The conical singularity, has first been studied theoretically by Ben Amar and Pomeau [1997]. Such
shape can easily be obtained experimentally by pushing a sheet through a cylinder with a point
force [Chaïeb et al., 1998, Cerda and Mahadevan, 1998].

4.3.1.1 Geometry

In order to describe a conical configuration of the sheet, we choose the polar material coordinates
centered at the tip of the cone, where the sheet takes the form [Witten, 2007]

R(r, θ) = rû(θ), (4.86)

where û(θ) is a unit vector. The conical shape is completely characterized by its intersection with the
unit sphere centered at the tip of the cone, which is given by û(θ).

Provided that |û′(θ)| = 1, this configuration is isometric to the planar reference shape. Notably,
the Gauss curvature is zero since the sheet is flat in the r-direction, hence the surface is developpable;
for this reason, this ideal shape is called the developpable-cone, or just “d-cone”. This shape is singular
ar r = 0, where the curvature vanishes.

In order to get the bending energy, we have to compute the curvature of the sheet at (r, θ) in the
θ-direction. Since û(θ) and û′(θ) are orthogonal unit vectors, the normal to the sheet is

n̂(θ) = û(θ)× û′(θ). (4.87)
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We note that û(θ) = ∂rR(r, θ) and û′(θ) = r−1∂θR(r, θ). The curvature in the direction θ is given by

c(r, θ) = n̂(θ) · r−2∂2
θR(r, θ) =

1

r

[
û(θ)× û′(θ)

]
· u′′(θ) =

c̃(θ)

r
, (4.88)

where we have introduced the rescaled curvature c̃(θ).

We can parametrize û(θ) in spherical coordinates:

û =

cos(φ) sin(β)
sin(φ) sin(β)

cos(β)

 , (4.89)

where β and φ are functions of θ. We can compute

û′ = φ′

− sin(φ) sin(β)
cos(φ) sin(β)

0

+ β′

cos(φ) cos(β)
sin(φ) cos(β)
− sin(β)

 . (4.90)

Notably, the condition |û′| = 1 reads

|û′|2 = φ′2 sin(β)2 + β′2 = 1. (4.91)

To get simpler and more intuitive expressions, we consider a cone with a small slope: β = π
2 − α,

with |α| � 1. We start by rephrasing the isometry condition (4.91). At order α0, it gives φ′ = 1,
meaning that φ(θ) = θ. We can parametrize the cone using the space coordinate φ instead of the
material coordinate θ; now the isometry condition is global:

2π =

∫ 2π

0

[
φ′2 sin(β)2 + β′2

]1/2
dθ =

∫ 2π

0

[
sin(β)2 +

(
dβ

dφ

)2
]1/2

dφ (4.92)

At order α2, this relation becomes ∫ 2π

0

[
α′′(θ)2 − α(θ)2

]
dθ = 0. (4.93)

Now the cone is completely defined by the function α(φ) (the function φ(θ) is only a reparametrisation
of the unit circle of the original sheet).

We can then compute the curvature as a function of α. At order α, using φ = θ, we have

û =

cos(θ)
sin(θ)
α

 , (4.94)

û′ =

− sin(θ)
cos(θ)

0

+ α′

0
0
1

 , (4.95)

n̂ = û× û′ =

−α cos(θ)
−α sin(θ)

1

+ α′

 sin(θ)
− cos(θ)

0

 , (4.96)

u′′ = −

cos(θ)
sin(θ)

0

+ α′′

0
0
1

 . (4.97)

So that the curvature is
c̃(θ) = n̂ · u′′ = α′′ + α. (4.98)
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4.3.1.2 Mechanics

The bending energy of an annular plate Rc < r < R is given by

Ubend =
B

2

∫ R

Rcore

rdr

∫ 2π

0
dθc(r, θ)2 =

B

2
log

(
R

Rcore

)∫ 2π

0
c̃(θ)2dθ. (4.99)

The singularity at the tip of the cone appears in the divergence of the bending energy as Rcore → 0.
In the limit of small slope, the bending energy thus reads

Ubend =
B

2
log

(
R

Rcore

)∫ 2π

0

[
α′′(θ) + α(θ)

]2
dθ. (4.100)

When a sheet is pushed through a cylinder, a geometrical constraint α ≥ α0 is imposed, where α0

is given by the radius of the cylinder and the indentation depth. To find the shape of the cone, α(θ),
we should minimize the energy (4.100) under the isometry constraint (4.93) and the constraint α ≥ α0

(otherwise α = 0 would be a solution). This problem resembles Euler buckling, and is also similar to
the formation of a ruck in a rug [Vella et al., 2009, Kolinski et al., 2009]. Solving the equations, one
gets the angular size of the region that does looses contact with the cylinder: ∆θ ' 139° [Audoly and
Pomeau, 2010].

4.3.1.3 Size of the core

For r < Rc, the diverging bending energy is regularized by allowing some stretching. We look for Rc

with scaling arguments. The curvature in the isometric region is of order c̃ ∼ α0, leading to a bending
energy

Ubend ∼ Bα2
0 log

(
R

Rcore

)
. (4.101)

The radius of curvature of the core is Rcurv ∼ Rcore/α0, hence its Gauss curvature is κG ∼ (α0/Rcore)
2,

generating a strain ε ∼ κGR
2
core ∼ α2

0 from Eq. (4.18). The stretching energy is thus

Ustr ∼ Y R2
coreε

2 ∼ Y R2
coreα

2
0. (4.102)

Balancing the bending and stretching energies, we find the optimal value

Rcore ∼
√
B

Y
∼ t : (4.103)

the size of the core should be given by the thickness of the material [Witten, 2007]. The corresponding
energy is

Ucone ∼ Bα2
0 log(R/t). (4.104)

However, the core in much larger in the experiments; it also has a crescent shape, that is to date not
completely understood.

4.3.2 Ridge singularities

A ridge appears for instance between two developpable-cones. We denote W the width of the ridge
(the distance between the centers of the cones). On the sides of the ridge, a sharp angle α is imposed
of the sheet. Having a sharp angle along the ridge would cost an infinite bending energy, so that there
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should be a finite curvature radius along the ridge, say R(s), that goes to 0 as s→ 0 or s→W . This
ridge, which should appear during crumpling, has been studied by Lobkovsky et al. [1995].

We provide a scaling argument for the curvature radius. We just need the maximal curvature
radius, R(W/2) = R. The bending energy per unit area is

Ubend ∼
B

R2
. (4.105)

The finite radius of curvature generates a stretching ε along the ridge, associated to a stretching
energy density Ustr ∼ Y ε2. In order to evaluate ε, we consider the maximal deviation ζ of the ridge
from a straight line. From geometric arguments we get ζ ∼ α2R. The stretching of the ridge is
ε ∼ (ζ/W )2 ∼ (α2R/W )2. The stretching energy density is thus

Ustr ∼ Y
(
α2R

W

)4

. (4.106)

Balancing the stretching and bending energies, we find

R ∼ t1/3W 2/3α−4/3. (4.107)

The deformation cover an area W × αR, so that the energy of this ridge is

Uridge ∼ Y t5/3W 1/3α7/3. (4.108)

We should note the peculiar scaling of the ridge; one would naively expect a dependence on W and α
as U ∼ α2W .

The scaling analysis presented here can be made rigorous by solving the Föppl-von Kármán equa-
tions. In this case the scaling results can be derived by a proper rescaling of the equations [Lobkovsky
and Witten, 1997].

We compare the energies of cones and ridges. The energy of a ridge (4.108) can be written as
Uridge ∼ B(W/t)1/3α7/3. For x = W/t � 1, x1/3 � log(x), hence the energy of the ridges should be
dominant in a crumpled state.

4.3.3 Experimental and numerical studies

The sheet can be followed in 3D optically during the early stage of crumpling [Aharoni and Sharon,
2010]. At the late stage, the shape can be obtained via X-ray microtomography [Cambou and Menon,
2011]. One can look for instance to the sheet orientation as a function of its position in the crumpled
ball, or at the number of contacts, getting information about the role of friction. Another (cheaper)
way to get information about the structure is to cut through the crumpled ball [Sultan and Boudaoud,
2006, Deboeuf et al., 2013]. In order to reduce the effect of friction, one can use a fluid in order to
lubricate the contacts [Cambou and Menon, 2015].

However, it is not straightforward to reconstruct the shape in material coordinates from the tomog-
raphy data or from a cut. The properties of the network of ridges may be obtained by analysing the
unfolded sheet, plasticity keeping track of the ridges [Blair and Kudrolli, 2005, Sultan and Boudaoud,
2006, Andresen et al., 2007]. From the distribution of ridges length, one can infer that crumpling is
hierarchical: long ridges form first, then they break in smaller ridges, and so on, analogously to what
happens in repeated folding [Deboeuf et al., 2013]. Moreover, the ridges are not always static, as the
conical singularities can move [Aharoni and Sharon, 2010], leaving behind them plastically deformed
furrows [Gottesman et al., 2015].
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The mechanical response can be obtained by placing the crumpled ball in a cylinder with a weighted
piston on it and looking at the displacement of the piston as a function of time (this is a much simpler
geometry than a confining sphere with a decreasing radius). Due to the interplay of the hierarchical
structure and friction effects, the dynamics may be logarithmic [Matan et al., 2002]: the displacement
h(t) follows h(t) = A log(t) for several decades in time. This dependence is not yet understood. The
mechanics can be related to the properties of the sound emitted during crumpling, which is easy to
measure [Kramer and Lobkovsky, 1996, Houle and Sethna, 1996].

Finally, numerical simulations allow to choose the ingredients to take into account. For instance,
one can simulate the crumpling of non-self-avoiding (“phantom”) sheets [Vliegenthart and Gompper,
2006], or tune the effects of plasticity [Tallinen et al., 2009].
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