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Stress tensor — Solution
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We consider IV particles in a box of volume V; we denote x; and p; the position and momentum of the particle
i. The particles interact through the isotropic pair potential v(x), which can result from any elementary interaction

(contact, electrostatic, Van der Waals, etc.).

1 Stress tensor as the current of momentum

1. We define the density p(x) and density of momentum 7r(x) in this system by

x) = Zé(m —x;),
x) = Zpié(:c —x;).

We can write conservation equations. The one for p reads

Op(, 1) Zwl -Vi(x —xi(t)) = f%V -7 (x, t),

where we have use that ; = p;/m.

2. The time derivative of 7 involves the stress tensor:
Oy (x,t) =V - o(x,t).

We will make this more explicit to determine the stress tensor.
The particles follow Newton’s law:
0

J#i
where f;; is the force exerted by the particle ¢ on the particle j. The force is given by
fii = =50 (%),

where Tj; = L; — Iy and .’f}ji = wji/\mji|.

We now write the evolution of the density of momentum, using greek indices for the coordinates:

Oymy(z,t) = Z p”;s“/@ o(x Z Ty §(x —x;)v (x)

; |2

The first part can be written as
; [J’%m(m - mi)} =a, Z [J%(s(m - mi)} = 9,01 (x),

where we have introduced the ideal gas stress

O’LdV(CL‘) = Z [—Mé(:ﬂ - wl)} .



3. The second part can be written as a sum over pairs:

1‘1; Lij
Z Z P2 §(x — x)v' (x54) Iy (x4) [§(x — &) — (T — x5)] (10)

2 |wﬂ| i) |5

We want to write this as a divergence; we note that (App. A)

dx—x;) —0(x —x;) =0, {mijy/o S —x; — Alx; —ax;])dA| . (11)

To keep simpler expressions in the following we denote

1
Oz z;)(T) = /0 0(x — x; — Ax; — ;])dA (12)

Now the pair contribution to the stress tensor becomes

So|-ys Liip o ib@ =2 (@) | =0, 3 T )1 () | = Dy B (), (13)

A YED) 37’ (4,5) |wi.7|

where we identify the pair contribution to the stress tensor:

air Lijulijv
obi (@) = ﬁ (245) 61, 2] () (14)
(4,4)

This is the Irving-Kirkwood formula [1].

2 Ideal gas contribution

4. To get better insight in the ideal gas contribution, we can average it over the momentum, using the Maxwell
distribution (see App. B),
<piupi1/> = ka(Sp,V7 (15)

then '
(o1 (@), = ~kT3,0(), (16)

which is the perfect gas law.

3 Pair contribution and response to deformation

5. The energy due to the pair interaction is

palr = Z v wz] (17)
(i,9)

Now assume that we deform the system by applying a small displacement field u(x). The strain field is
1
€uv = 5(auuu + avuu)- (18)
The new positions are x, = x; + u(x;). The distance between the particles ¢ and j are now
2
iy~ w?j + 2 [up () — w(@s)]- (19)

We can write the difference of the displacements as

1
() = @) = iz [ Do+ My — N (20)



hence

1 1
LijuLijv
mgjz ~ :L‘?j + 2xij#ZijVA &,uu(wi + )\[:L‘j - ml])d)\ >~ <|:131J| + LS / 6#,,(331' —+ )\[:13] - ﬂ)z])dA>

lziil - Jo
Finally,
LijuLijv !
\x;j\ — |£IJZJ| ~ L/ EWJ(CI}Z‘ + )\[:cj — $Z])d)\
|zijul Jo
We note that .
/ e (i + Az — x;])d) = /dwew(w)émvmﬂ(m).
0

The change in energy for this pair is
TijnTij !
v(ag;) — v(ay) ~ (g — @) v () ~ ﬁ,]”’(wij)/o € (Ti + Alxj — i) )dA
ijp

TijuTiju
= [ A @) T () )
ijp

Summing over the pairs,
/ R pair
pair Upa1r - /G#V(m)a,uu (ZB)d:l?,

as we expect.

4 Average of the stress and pair correlation

6. Using that [ Oz 2;)(®)dT =1, we easily write the volume average of the (pair) stress

—pair __ 1 air _ 1 E LijuLijv 4 _ 1 § :xijp,xijv /
2y 1

The two-particle density is defined by
p2(z,x’) = Z(S(m —x;)d(x' — x;).
i#j
We can use it to write the pair contribution to the stress:

. 1 xl, —x,)(xl, —xy
T / dada!po(a,2') |;Jf)_( z] Da )

We change variable to y = &’ — :

—pair 1 yﬂyV /
Op = W/dwdypg(m,sc—i—y) o] v'(y).

If the system is homogeneous ps(x, x + y) does not depend on x, we denote it p2(y) and

_pair _ 1 YuYy
Upi“=*/dyp2y 220 (y).
" 5 ()|y| (y)

Sometimes, the pair correlation is used instead: p2(y) = p*g(y) and

—2
_pai P YulYv
o ——*/dygy EZ20 (y).
a 2 ) ly| ®)

This relates the average stress and the structure of the system.
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A Difference of two Dirac as a divergence

Using a test function ¢(x), we can easily show that

0(x —x1) — 6(x — x2) :V-/O A(s)d(x — v(s))ds, (33)

where 4 is a contour with v(0) = x1, v(1) = x».
Indeed, with such contour we have

[ 8@~ 21) - 8@~ @) s(@)de = d(a1) - (az) 3
— (I} (35)
= [ Liotatonias (36)
-/ (5) - Vol (s))ds. (37)
Now we write
Vo(1() = [ 3@~ v(s)Va(a)dz =~ [ o(@)V3(@ ~¥(s))de. (39)
Hence
[ (@ a1 =@~ an)] s(e)de = [ deota) | () Vol — ()ds. (39)
So that, as distributions,
1 1
S —a1) =@ —w2) = [ V() Vi@ —y(:)ds =V [ ¥(s)d(a~ () (40)

We can then specify it to y(s) = &1 + s(z2 — x1), leading to

do—a) ~dla o) = V- (@2 -2 [ e w1 — sl oi)ds). (41)

B Correlations of a Gaussian random variable

Here we consider a Gaussian random variable € R™ with probability density

1
p(x) = Cexp <2AWIIL$V> , (42)

where A, is a symmetric positive matrix, and C is the constant that ensures that the probability density is
normalized, [ p(x)de = 1. We show that its correlations are given by

(xpzy) = A;,,l (43)
To show this, we compute the derivatives
1 1
aa exp 7§A/vauxu = *Aakm)\ exp 7§A/LVI/LIV ) (44)
1 1
0005 exp —§AWJ;MJ;V = (AarTrApoTo — Aap) €Xp —§Au,,xuxu . (45)

The integral over x of these total derivatives is zero. Multiplying Eq. (45) by C and integrating over x, we get for
the right hand side

AaAA[ja <:U)\l'c,> = Aag. (46)
In matrix notation this means that A(zzT)A = A, hence
(xx) = A7, (47)
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