ICFP - Soft Matter
 Einstein viscosity - Solution

Anke Lindner, Vincent Démery

We mostly follow Ref. [1], in particular for the calculation of the flow. Another useful reference is Ref. [2].

1 Flow

1. We impose a shear flow at infinity: $\boldsymbol{u}^{\infty}(\boldsymbol{x})=\dot{\gamma} y \hat{\boldsymbol{x}}$. We use Stokes equations, hence everything (flow and motion of the sphere) should be linear in the imposed flow. We decompose $\boldsymbol{u}^{\infty}=\boldsymbol{u}_{\text {rot }}^{\infty}+\boldsymbol{u}_{\text {strain }}^{\infty}$, where

$$
\begin{equation*}
\boldsymbol{u}_{\mathrm{rot}}^{\infty}(\boldsymbol{x})=\frac{\dot{\gamma}}{2}(y \hat{\boldsymbol{x}}-x \hat{\boldsymbol{y}}) \tag{1}
\end{equation*}
$$

is a pure rotation, and

$$
\begin{equation*}
\boldsymbol{u}_{\text {strain }}^{\infty}(\boldsymbol{x})=\frac{\dot{\gamma}}{2}(y \hat{\boldsymbol{x}}+x \hat{\boldsymbol{y}}) \tag{2}
\end{equation*}
$$

is a pure strain.
2. The rotation enforces a rotation of the sphere with the rate $-\dot{\gamma} / 2$ around $\hat{\boldsymbol{z}}$; this flow is not disturbed. On the other hand

$$
\begin{equation*}
\boldsymbol{u}_{\text {strain }}^{\infty}(\boldsymbol{x})=\frac{\dot{\gamma}}{2}(y \hat{\boldsymbol{x}}+x \hat{\boldsymbol{y}}) \tag{3}
\end{equation*}
$$

is a pure strain. As the sphere is rigid, this flow must be disturbed to ensure the boundary condition $\boldsymbol{u}(|\boldsymbol{x}|=a)=0$.
3. We just have to study the disturbance created by the strain; we denote $\boldsymbol{u}_{\text {strain }}^{\infty}=\boldsymbol{u}^{\infty}$, and \boldsymbol{u} the disturbance. We have

$$
\begin{equation*}
u_{i}^{\infty}(\boldsymbol{x})=E_{i j} x_{j} \tag{4}
\end{equation*}
$$

with $E_{i i}=0$, and the boundary condition is $u_{i}(r=a)=-E_{i j} x_{j}$, and $u_{i}(r \rightarrow \infty) \rightarrow 0$. The disturbance should satisfy the Stokes equations

$$
\begin{align*}
\partial_{i} u_{i} & =0 \tag{5}\\
\mu \nabla^{2} u_{i} & =\partial_{i} p \tag{6}
\end{align*}
$$

where p is the pressure and μ is the viscosity.

2 Solution for the flow

4. Combining equations $(5,6)$, we find $\partial_{i} \partial_{i} p=\mu \nabla^{2} \partial_{i} u_{i}=0: p$ is harmonic.
5. To compute the derivatives of $1 / r$, we use $\partial_{i} r=x_{i} / r$ and $\partial_{i} x_{j}=\delta_{i j}$. We get:

$$
\begin{align*}
\partial_{i}\left(\frac{1}{r}\right) & \propto \frac{x_{i}}{r^{3}} \tag{7}\\
\partial_{i} \partial_{j}\left(\frac{1}{r}\right) & \propto \frac{\delta_{i j}}{r^{3}}-\frac{3 x_{i} x_{j}}{r^{5}} \tag{8}\\
\partial_{i} \partial_{j} \partial_{k}\left(\frac{1}{r}\right) & \propto \frac{\delta_{i j} x_{k}+\delta_{i k} x_{j}+\delta_{j k} x_{i}}{r^{5}}-\frac{5 x_{i} x_{j} x_{k}}{r^{7}} \tag{9}
\end{align*}
$$

6. The only way to form a scalar with the tensor $E_{i j}$ and these quantities is to have

$$
\begin{equation*}
p \propto E_{i j} \partial_{i} \partial_{j}\left(\frac{1}{r}\right) \propto E_{i j} \frac{x_{i} x_{j}}{r^{5}} \tag{10}
\end{equation*}
$$

where we have used that $E_{i i}=0$. Hence

$$
\begin{equation*}
p=\lambda_{1} E_{i j} \frac{x_{i} x_{j}}{r^{5}} \tag{11}
\end{equation*}
$$

7. We then have to determine the flow \boldsymbol{u} : it can be decomposed in a special solution to (6) and a harmonic part. The special solution can be written $u_{i}=x_{i} p /(2 \mu)$, indeed:

$$
\begin{equation*}
\partial_{j} \partial_{j}\left(x_{i} p\right)=\left(\partial_{j} \partial_{j} x_{i}\right) p+2\left(\partial_{j} x_{i}\right)\left(\partial_{j} p\right)+x_{i} \partial_{j} \partial_{j} p=2 \delta_{i j} \partial_{j} p=2 \partial_{i} p . \tag{12}
\end{equation*}
$$

The harmonic solution has to be formed from the derivatives of $1 / r$ above, leading to

$$
\begin{equation*}
u_{i}=\frac{\lambda_{1}}{2 \mu} \frac{E_{j k} x_{i} x_{j} x_{k}}{r^{5}}+\lambda_{2} \frac{E_{i j} x_{j}}{r^{3}}+\lambda_{3} E_{j k}\left(\frac{\delta_{i j} x_{k}+\delta_{i k} x_{j}+\delta_{j k} x_{i}}{r^{5}}-\frac{5 x_{i} x_{j} x_{k}}{r^{7}}\right) . \tag{13}
\end{equation*}
$$

8. In order to enforce incompressibility, we have to compute the divergence of the three terms. The divergence of the first term can be computed and is zero. The last term is $E_{j k} \partial_{i} \partial_{j} \partial_{k}(1 / r)$ and since $1 / r$ is harmonic the divergence of this term is zero. The divergence of the second term is not zero, which sets $\lambda_{2}=0$.

The boundary condition $u_{i}(r=a)=-E_{i j} x_{j}$ leads to $\frac{\lambda_{1}}{2 \mu a^{5}}=\frac{5 \lambda_{3}}{a^{7}}$ and $2 \lambda_{3} / a^{5}=-1$, hence

$$
\begin{align*}
p & =-5 \mu a^{3} \frac{E_{i j} x_{i} x_{j}}{r^{5}} \tag{14}\\
u_{i} & =-\frac{5}{2} \frac{a^{3}}{r^{5}} E_{j k} x_{i} x_{j} x_{k}\left(1-\frac{a^{2}}{r^{2}}\right)-\frac{a^{5}}{r^{5}} E_{i j} x_{j} \tag{15}
\end{align*}
$$

3 Average stress in the fluid and viscosity

9. We have that $\partial_{k}\left(\sigma_{i k} x_{j}\right)=\sigma_{i j}+\left(\partial_{k} \sigma_{i k}\right) x_{j}=\sigma_{i j}$, using that $\partial_{k} \sigma_{i k}=0$. Hence, we can write

$$
\begin{equation*}
\bar{\sigma}_{i j}=\frac{1}{V} \int_{\mathcal{V}} \sigma_{i j} \mathrm{~d} \boldsymbol{x}=\frac{1}{V} \int_{\mathcal{V}} \partial_{k}\left(\sigma_{i k} x_{j}\right) \mathrm{d} \boldsymbol{x}=\frac{1}{V} \int_{\partial \mathcal{V}} \sigma_{i k} x_{j} n_{k} \mathrm{~d} \boldsymbol{x} \tag{16}
\end{equation*}
$$

where n_{k} is a unit vector pointing towards the outside of the volume \mathcal{V}. This quantity is actually what is measured by a rheometer (which measures, for instance, the torque on the top plate).
10. Keeping only the dominant terms, we get

$$
\begin{align*}
p & =-5 \mu a^{3} \frac{E_{i j} x_{i} x_{j}}{r^{5}} \tag{17}\\
u_{i} & =-\frac{5}{2} \frac{a^{3}}{r^{5}} E_{j k} x_{i} x_{j} x_{k} \tag{18}
\end{align*}
$$

The stress disturbance is

$$
\begin{equation*}
\delta \sigma_{i j}=\mu\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right)-p \delta_{i j}=5 \mu a^{3}\left(-\frac{E_{i k} x_{j} x_{k}+E_{j k} x_{i} x_{k}}{r^{5}}+5 E_{k l} \frac{x_{i} x_{j} x_{k} x_{l}}{r^{7}}\right) \tag{19}
\end{equation*}
$$

Integrating over the sphere of radius R, \mathcal{S}_{R}, using that $n_{i}=x_{i} / R$, we get

$$
\begin{align*}
\delta \bar{\sigma}_{i j} & =\frac{5 \mu a^{3}}{R V} \int_{\mathcal{S}_{R}}\left(-E_{i k} \frac{x_{j} x_{k}}{R^{3}}+4 E_{k l} \frac{x_{i} x_{j} x_{k} x_{l}}{R^{5}}\right) \tag{20}\\
& =\frac{5 \mu a^{3}}{V} \int_{\mathcal{S}_{1}}\left(-E_{i k} x_{j} x_{k}+4 E_{k l} x_{i} x_{j} x_{k} x_{l}\right) \tag{21}\\
& =\frac{5 \mu a^{3}}{V}\left[-E_{i k} \frac{4 \pi}{3} \delta_{j k}+4 E_{k l} \frac{4 \pi}{15}\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right)\right] \tag{22}\\
& =\frac{4 \pi \mu a^{3}}{V} E_{i j} . \tag{23}
\end{align*}
$$

Note that this is the additionnal stress due to the disturbance \boldsymbol{u}. The total average stress is

$$
\begin{equation*}
\bar{\sigma}_{i j}=2 \mu E_{i j}\left(1+\frac{2 \pi a^{3}}{V}\right)=2 \mu E_{i j}\left(1+\frac{3 v}{2 V}\right) \tag{24}
\end{equation*}
$$

where $v=(4 / 3) \pi a^{3}$ is the volume of a small sphere.
11. The average strain disturbance is

$$
\begin{align*}
\delta \bar{e}_{i j} & =\frac{1}{2 V} \int_{\mathcal{V}}\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right) \tag{25}\\
& =\frac{1}{2 V R} \int_{\mathcal{S}_{R}}\left(x_{i} u_{j}+x_{j} u_{i}\right) \tag{26}\\
& =-\frac{5 a^{3}}{2 V} \int_{\mathcal{S}_{1}} E_{k l} x_{i} x_{j} x_{k} x_{l} \tag{27}\\
& =-\frac{v}{V} E_{i j} \tag{28}
\end{align*}
$$

The average strain is thus

$$
\begin{equation*}
\bar{e}_{i j}=\left(1-\frac{v}{V}\right) E_{i j} \tag{29}
\end{equation*}
$$

12. Summing the response over all the spheres and using the volume fraction ϕ, we get

$$
\begin{align*}
\bar{\sigma}_{i j} & =2 \mu E_{i j}\left(1+\frac{3}{2} \phi\right) \tag{30}\\
\bar{e}_{i j} & =(1-\phi) E_{i j} \tag{31}
\end{align*}
$$

For small volume fraction, inverting the second equation gives $E_{i j}=(1+\phi) \bar{e}_{i j}$ and

$$
\begin{equation*}
\bar{\sigma}_{i j}=2 \mu \bar{e}_{i j}\left(1+\frac{5}{2} \phi\right)=2 \mu_{E} \bar{e}_{i j} \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{E}=\mu\left(1+\frac{5}{2} \phi\right) \tag{33}
\end{equation*}
$$

is the Einstein viscosity.

3.1 Alternative calculation of the viscosity

This is the calculation given in Ref. [1].
The average stress in the fluid is

$$
\begin{equation*}
\bar{\sigma}_{i j}=\frac{1}{V} \int_{\mathcal{V}} \sigma_{i j}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=2 \mu \bar{e}_{i j}-\bar{p} \delta_{i j}+\frac{1}{V} \int_{\mathcal{V}}\left[\sigma_{i j}(\boldsymbol{x})-2 \mu e_{i j}(\boldsymbol{x})+p(\boldsymbol{x}) \delta_{i j}\right] \mathrm{d} \boldsymbol{x} \tag{34}
\end{equation*}
$$

note that the integrand is non zero over the particles only. The last term in the integrand and \bar{p} should vanish by symmetry. Noting that $\sigma_{i j}=\partial_{k}\left(\sigma_{i k} x_{j}\right)$, we can transform the integral in a surface integral

$$
\begin{equation*}
\bar{\sigma}_{i j}=2 \mu E_{i j}+\frac{1}{V} \int_{\mathcal{S}_{R}}\left[\sigma_{i k} x_{j} n_{k}-\mu\left(n_{i} u_{j}+n_{j} u_{i}\right)\right] \mathrm{d} \boldsymbol{x} \tag{35}
\end{equation*}
$$

where the integral is performed over the sphere of radius R. Choosing $R \rightarrow \infty$, we just have to care about the dominant component of the flow,

$$
\begin{equation*}
u_{i}^{\mathrm{dom}}=-\frac{5}{2} \frac{a^{3}}{r^{5}} E_{j k} x_{i} x_{j} x_{k} \tag{36}
\end{equation*}
$$

it is associated to a strain rate

$$
\begin{equation*}
e_{i j}^{\mathrm{dom}}=-\frac{5 a^{3}}{2}\left[\frac{E_{k l} x_{k} x_{l}}{r^{5}}\left(\delta_{i j}-\frac{5 x_{i} x_{j}}{r^{2}}\right)+\frac{E_{i k} x_{j} x_{k}+E_{j k} x_{i} x_{k}}{r^{5}}\right] \tag{37}
\end{equation*}
$$

With the stress $\sigma_{i j}^{\text {dom }}=2 \mu e_{i j}^{\text {dom }}-p \delta_{i j}$, the surface integral reads (using the surface integrals given in App. A)

$$
\begin{equation*}
\int_{\mathcal{S}_{R}}\left[\sigma_{i k} x_{j} n_{k}-\mu\left(n_{i} u_{j}+n_{j} u_{i}\right)\right] \mathrm{d} \boldsymbol{x}=\frac{20 \pi}{3} \mu a^{3} E_{i j} \tag{38}
\end{equation*}
$$

Summing over the N particles in the suspension, and using the volume fraction $\phi=\frac{4 \pi a^{3} N}{3 V}$, we get

$$
\begin{equation*}
\bar{\sigma}_{i j}=2 \mu\left(1+\frac{5}{2} \phi\right) E_{i j} \tag{39}
\end{equation*}
$$

where the Einstein viscosity appears:

$$
\begin{equation*}
\mu_{E}=\mu\left(1+\frac{5}{2} \phi\right) \tag{40}
\end{equation*}
$$

A Surface integrals of polynomials

Using spherical coordinates, we can compute the following integrals over the unit sphere:

$$
\begin{align*}
\int_{\mathcal{S}} x_{i} x_{j} \mathrm{~d} \boldsymbol{x} & =\frac{4 \pi}{3} \delta_{i j} \tag{41}\\
\int_{\mathcal{S}} x_{i} x_{j} x_{k} x_{l} \mathrm{~d} \boldsymbol{x} & =\frac{4 \pi}{15}\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right) \tag{42}
\end{align*}
$$

References

[1] Élisabeth Guazzelli, Jeffrey F. Morris, and Sylvie Pic. A Physical Introduction to Suspension Dynamics. Cambridge Texts in Applied Mathematics. Cambridge University Press, 2011.
[2] L. D. Landau and E. M. Lifshitz. Fluid Mechanics, Second Edition: Volume 6. Course of theoretical physics / by L. D. Landau and E. M. Lifshitz, Vol. 6. Butterworth-Heinemann, 2 edition, jan 1987.

