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We mostly follow Ref. [1], in particular for the calculation of the flow. Another useful reference is Ref. [2].

1 Flow

1. We impose a shear flow at infinity: u∞(x) = γ̇yx̂. We use Stokes equations, hence everything (flow and motion
of the sphere) should be linear in the imposed flow. We decompose u∞ = u∞

rot + u∞
strain, where

u∞
rot(x) =

γ̇

2
(yx̂− xŷ) (1)

is a pure rotation, and

u∞
strain(x) =

γ̇

2
(yx̂+ xŷ) (2)

is a pure strain.

2. The rotation enforces a rotation of the sphere with the rate −γ̇/2 around ẑ; this flow is not disturbed. On the
other hand

u∞
strain(x) =

γ̇

2
(yx̂+ xŷ) (3)

is a pure strain. As the sphere is rigid, this flow must be disturbed to ensure the boundary condition u(|x| = a) = 0.

3. We just have to study the disturbance created by the strain; we denote u∞
strain = u∞, and u the disturbance.

We have
u∞
i (x) = Eijxj , (4)

with Eii = 0, and the boundary condition is ui(r = a) = −Eijxj , and ui(r → ∞) → 0. The disturbance should
satisfy the Stokes equations

∂iui = 0, (5)

µ∇2ui = ∂ip, (6)

where p is the pressure and µ is the viscosity.

2 Solution for the flow

4. Combining equations (5,6), we find ∂i∂ip = µ∇2∂iui = 0: p is harmonic.

5. To compute the derivatives of 1/r, we use ∂ir = xi/r and ∂ixj = δij . We get:

∂i

(
1

r

)
∝ xi

r3
, (7)

∂i∂j

(
1

r

)
∝ δij

r3
− 3xixj

r5
, (8)

∂i∂j∂k

(
1

r

)
∝ δijxk + δikxj + δjkxi

r5
− 5xixjxk

r7
. (9)

1



6. The only way to form a scalar with the tensor Eij and these quantities is to have

p ∝ Eij∂i∂j

(
1

r

)
∝ Eij

xixj

r5
, (10)

where we have used that Eii = 0. Hence
p = λ1Eij

xixj

r5
. (11)

7. We then have to determine the flow u: it can be decomposed in a special solution to (6) and a harmonic part.
The special solution can be written ui = xip/(2µ), indeed:

∂j∂j(xip) = (∂j∂jxi)p+ 2(∂jxi)(∂jp) + xi∂j∂jp = 2δij∂jp = 2∂ip. (12)

The harmonic solution has to be formed from the derivatives of 1/r above, leading to

ui =
λ1

2µ

Ejkxixjxk

r5
+ λ2

Eijxj

r3
+ λ3Ejk

(
δijxk + δikxj + δjkxi

r5
− 5xixjxk

r7

)
. (13)

8. In order to enforce incompressibility, we have to compute the divergence of the three terms. The divergence
of the first term can be computed and is zero. The last term is Ejk∂i∂j∂k(1/r) and since 1/r is harmonic the
divergence of this term is zero. The divergence of the second term is not zero, which sets λ2 = 0.

The boundary condition ui(r = a) = −Eijxj leads to λ1

2µa5 = 5λ3

a7 and 2λ3/a
5 = −1, hence

p = −5µa3
Eijxixj

r5
, (14)

ui = −5

2

a3

r5
Ejkxixjxk

(
1− a2

r2

)
− a5

r5
Eijxj . (15)

3 Average stress in the fluid and viscosity

9. We have that ∂k(σikxj) = σij + (∂kσik)xj = σij , using that ∂kσik = 0. Hence, we can write

σ̄ij =
1

V

∫
V
σijdx =

1

V

∫
V
∂k(σikxj)dx =

1

V

∫
∂V

σikxjnkdx, (16)

where nk is a unit vector pointing towards the outside of the volume V. This quantity is actually what is measured
by a rheometer (which measures, for instance, the torque on the top plate).

10. Keeping only the dominant terms, we get

p = −5µa3
Eijxixj

r5
, (17)

ui = −5

2

a3

r5
Ejkxixjxk. (18)

The stress disturbance is

δσij = µ(∂iuj + ∂jui)− pδij = 5µa3
(
−Eikxjxk + Ejkxixk

r5
+ 5Ekl

xixjxkxl

r7

)
. (19)

Integrating over the sphere of radius R, SR, using that ni = xi/R, we get

δσ̄ij =
5µa3

RV

∫
SR

(
−Eik

xjxk

R3
+ 4Ekl

xixjxkxl

R5

)
(20)

=
5µa3

V

∫
S1

(−Eikxjxk + 4Eklxixjxkxl) (21)

=
5µa3

V

[
−Eik

4π

3
δjk + 4Ekl

4π

15
(δijδkl + δikδjl + δilδjk)

]
(22)

=
4πµa3

V
Eij . (23)

2



Note that this is the additionnal stress due to the disturbance u. The total average stress is

σ̄ij = 2µEij

(
1 +

2πa3

V

)
= 2µEij

(
1 +

3v

2V

)
, (24)

where v = (4/3)πa3 is the volume of a small sphere.

11. The average strain disturbance is

δēij =
1

2V

∫
V
(∂iuj + ∂jui) (25)

=
1

2V R

∫
SR

(xiuj + xjui) (26)

= −5a3

2V

∫
S1

Eklxixjxkxl (27)

= − v

V
Eij . (28)

The average strain is thus
ēij =

(
1− v

V

)
Eij . (29)

12. Summing the response over all the spheres and using the volume fraction ϕ, we get

σ̄ij = 2µEij

(
1 +

3

2
ϕ

)
, (30)

ēij = (1− ϕ)Eij . (31)

For small volume fraction, inverting the second equation gives Eij = (1 + ϕ)ēij and

σ̄ij = 2µēij

(
1 +

5

2
ϕ

)
= 2µE ēij , (32)

where
µE = µ

(
1 +

5

2
ϕ

)
(33)

is the Einstein viscosity.

3.1 Alternative calculation of the viscosity
This is the calculation given in Ref. [1].

The average stress in the fluid is

σ̄ij =
1

V

∫
V
σij(x)dx = 2µēij − p̄δij +

1

V

∫
V
[σij(x)− 2µeij(x) + p(x)δij ] dx; (34)

note that the integrand is non zero over the particles only. The last term in the integrand and p̄ should vanish by
symmetry. Noting that σij = ∂k(σikxj), we can transform the integral in a surface integral

σ̄ij = 2µEij +
1

V

∫
SR

[σikxjnk − µ(niuj + njui)] dx, (35)

where the integral is performed over the sphere of radius R. Choosing R → ∞, we just have to care about the
dominant component of the flow,

udom
i = −5

2

a3

r5
Ejkxixjxk, (36)

it is associated to a strain rate

edomij = −5a3

2

[
Eklxkxl

r5

(
δij −

5xixj

r2

)
+

Eikxjxk + Ejkxixk

r5

]
. (37)
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With the stress σdom
ij = 2µedomij − pδij , the surface integral reads (using the surface integrals given in App. A)∫

SR

[σikxjnk − µ(niuj + njui)] dx =
20π

3
µa3Eij . (38)

Summing over the N particles in the suspension, and using the volume fraction ϕ = 4πa3N
3V , we get

σ̄ij = 2µ

(
1 +

5

2
ϕ

)
Eij , (39)

where the Einstein viscosity appears:

µE = µ

(
1 +

5

2
ϕ

)
. (40)

A Surface integrals of polynomials
Using spherical coordinates, we can compute the following integrals over the unit sphere:∫

S
xixjdx =

4π

3
δij , (41)∫

S
xixjxkxldx =

4π

15
(δijδkl + δikδjl + δilδjk) . (42)
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