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We mostly follow Ref. [1], in particular for the calculation of the flow. Another useful reference is Ref. [2].

1 Flow

1. We impose a shear flow at infinity: u®(x) = 4y&. We use Stokes equations, hence everything (flow and motion
of the sphere) should be linear in the imposed flow. We decompose 4™ = ulS, + ul.;,, where
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is a pure strain.

2. The rotation enforces a rotation of the sphere with the rate —%/2 around 2; this flow is not disturbed. On the
other hand
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is a pure strain. As the sphere is rigid, this flow must be disturbed to ensure the boundary condition u(|z| = a) = 0.

3. We just have to study the disturbance created by the strain; we denote ug,,;, = u°°, and u the disturbance.
We have
u;*(x) = Eijx;, (4)
with E;; = 0, and the boundary condition is w;(r = a) = —E;;x;, and u;(r — 0o) — 0. The disturbance should
satisfy the Stokes equations
pN?u; = dip, (6)

where p is the pressure and p is the viscosity.

2 Solution for the flow

4. Combining equations (5,6), we find 9;0;p = uV20;u; = 0: p is harmonic.

5. To compute the derivatives of 1/r, we use d;r = x;/r and 0;x; = J;;. We get:
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6. The only way to form a scalar with the tensor FE;; and these quantities is to have
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where we have used that E;; = 0. Hence
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7. We then have to determine the flow w: it can be decomposed in a special solution to (6) and a harmonic part.
The special solution can be written u; = 2;p/(2u), indeed:

9;0;(wip) = (9;05:)p + 2(0;2:)(9;p) + 2:0;0;p = 20:30;p = 20;p. (12)
The harmonic solution has to be formed from the derivatives of 1/r above, leading to
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8. In order to enforce incompressibility, we have to compute the divergence of the three terms. The divergence
of the first term can be computed and is zero. The last term is E;;,0;0;0x(1/r) and since 1/r is harmonic the
divergence of this term is zero. The divergence of the second term is not zero, which sets Ay = 0.

The boundary condition w;(r = a) = —E;;x; leads to 22}15 = 5(%73 and 2\3/a® = —1, hence
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3 Average stress in the fluid and viscosity
9. We have that Ox(oikx;) = 0i; + (Okoir)z; = 045, using that dyo;; = 0. Hence, we can write
o ! / d L / Ok ( )d L d (16)
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where ny, is a unit vector pointing towards the outside of the volume V. This quantity is actually what is measured
by a rheometer (which measures, for instance, the torque on the top plate).

10. Keeping only the dominant terms, we get
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u; = fgi—zEjkxixjxk. (18)
The stress disturbance is
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Integrating over the sphere of radius R, Sg, using that n; = x; /R, we get
00 = % /SR (—Eik: xlj;k + 4F5 a?ixggkxl) (20)
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Note that this is the additionnal stress due to the disturbance w. The total average stress is
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where v = (4/3)7a? is the volume of a small sphere.

11. The average strain disturbance is
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The average strain is thus
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12. Summing the response over all the spheres and using the volume fraction ¢, we get

Gij = 2ukE;; <1 + 2¢) , (30)
éi; = (1—9¢)E;;. (31)

For small volume fraction, inverting the second equation gives E;; = (1 + ¢)é&;; and
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where .
- (1 + 2¢) (33)

is the Einstein viscosity.

3.1 Alternative calculation of the viscosity

This is the calculation given in Ref. [1].
The average stress in the fluid is
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note that the integrand is non zero over the particles only. The last term in the integrand and p should vanish by
symmetry. Noting that 0;; = Oy (oikx;), we can transform the integral in a surface integral
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where the integral is performed over the sphere of radius R. Choosing R — oo, we just have to care about the
dominant component of the flow,
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it is associated to a strain rate
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With the stress 0?]9"‘ = 2,ue%°m — pd;j, the surface integral reads (using the surface integrals given in App. A)
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Summing over the N particles in the suspension, and using the volume fraction ¢ = %, we get
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where the Einstein viscosity appears:
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A Surface integrals of polynomials

Using spherical coordinates, we can compute the following integrals over the unit sphere:
4
/ $Z‘$]‘d$ = léij, (41)
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