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1 Velocity correlations in Laplace space

1. At equilibrium, equipartition imposes:
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2. The Laplace transform of the Langevin equation starting at t = 0 is:
m[s0(s) — vo] = —((s)d(s) + (). (2)
so that the Laplace transform of the velocity is
o(s) = o F(s). (3)
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3. Multiplying by vy and averaging (over vy and 7n) leads to
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where we have used the equipartition (Eq. (1)).
4. Thus the complex modulus can be obtained as
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2 Stationarity condition and correlation function of the noise

5. The double Laplace transform of the correlation C(¢,t') = (v(t)v(t')) is simply C(s,s") = (0(s)D(s’)), so using
Eq. (3) and averaging gives
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6. The double Laplace transform of A/ (¢,t') is
N(s,s) :/ dt/ At'e ==Y N (8, 1), (7)
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To use the stationarity, we decompose
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We have used the parity of the correlation, N(t) = N(—t).
Using this relation in Eq. (6), we get

Tm(s+s") + N(s)+ N(s')

C(s,s') = )+ = = .
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(12)

7. The calculation of the previous question is very general, and holds for any stationary function; hence it also
applies to the correlation C(¢,t"), which should be stationary, hence

; C(s) + C’(s’).

C(s,s") = o (13)
Inserting Eq. (4) leads to
L Tm(s+ )+ T[Us) + ()]
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8. Comparing Egs. (12) and (13), we obtain A A
N(s) =T¢(s), (15)
meaning that
N(t =) = (n(t)n(t)) = TC(|t - t')). (16)

This is a fluctuation-dissipation relation since it relates the correlations of the noise N(¢) (the fluctuations) to the
friction ((t) (dissipation).

We have shown that it is legitimate to consider the process starting at ¢t = 0 with an initial condition uncorrelated
with the noise.
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