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Diffusio-osmosis notably refers to electrical transport induced by salinity gradients [1, 2]. Here, we study this
phenomenon and apply it to boron-nitride nanotubes (BNNT), which could ultimately be used to convert the
salinity difference between fresh water and sea water into electric energy.

Boron-nitride nanotubes are charged, and their surface charge is screened by counter-ions. First, we use the
Poisson-Boltzmann equation to determine the density profile of counter-ions close to the surface of the nanotube;
the thickness of the cloud of counter-ions is given by the Debye length. The Debye length depends on the salt
concentration, hence a gradient of salt concentration results in a gradient of Debye length, and hence a gradient of
electric potential parallel to the surface, giving rise to a current. The second step is to use the Stokes equation to
describe this flow. Finally, we compute the electric current generated by this flow.

1 Charge distribution

1. Recall the expression of the Debye length λD in an electrolyte. Estimate its value at room temperature for a
simple salt at concentration C = 10−2 m. We give kBT ≃ 4 · 10−21 J at room temperature, e ≃ 1.6 · 10−19 C, the
Avogadro number NA ≃ 6 · 1023 and the permittivity of water ϵw ≃ 7 · 10−10 Fm−1. Compare the Debye length
to the radius of the BNNTs, R = 15nm to 40 nm, and explain why we can consider the wall of the nanotube as
planar. In the following we set kB = 1 so that the thermal energy is T .

2. * Derive the Poisson-Boltzmann equation for the electrostatic potential ψ(r) and specialize it to a symmet-
ric electrolyte [3]. Then solve it in a planar geometry. We admit that the solution of u′′(z) = sinh(u(z)) is
tanh(u(z)/4) = tanh(u(0)/4) exp(−z).

3. * Relate the surface charge Σ to the surface potential ψs.

4. * Discuss the Debye-Hückel limit in the previous questions. The BNNTs have a very large electric charge,
Σ ≃ 1 Cm−2; can we use the Debye-Hückel limit?

2 Flow

5. Comment the different terms of the Stokes equation [1]

0 = η∇2v(r)−∇p(r)−
∑
i

qiCi(r)∇ψ(r), (1)

where qi and Ci(r) are the charge and density of the species i.

6. Write the incompressibility condition. Given that the scale of the variation of the different quantities along the
nanotube are given by its length, L ≃ 1 µm, explain why the normal velocity component, vz, is negligible with
respect to the tangential component vx; we neglect it in the following.

7. Write the Stokes equation for a simple salt and use the Boltzmann equation to eliminate the concentrations
Ci(r). Furthermore, in order to simplify the calculations we restrict ourselves to the lowest order in the surface
potential ψs (we take the Debye-Hückel limit).

8. Project the Stokes equation on the direction normal to the wall, assuming that limz→∞ p(x, z) = 0, to show
that the pressure profile is given by

p(x, z) =
e2C∞(x)

T
ψ(x, z)2. (2)
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9. * Project the Stokes equation along the wall and integrate the resulting equation to obtain vx(z) for a concen-
tration gradient C ′

∞, using a slip boundary condition at the wall and the fact that the velocity vx(z) goes to a
constant far from the wall.

3 Electric current

10. Does the flow computed in the previous section induce an electric current in the bulk? Can the difference in
diffusivity between the anions and cations induce an electric current in the bulk? Here we assume that they have
the same diffusivity.

11. * Compute the diffusio-osmotic electric current in the BNNT induced by the flow,

IDO = 2πR

∫ ∞

0

e[C+(z)− C−(z)]vx(z)dz. (3)

The exact expression is

IDO = 2πR× 2
√
2(ϵT )3/2ψsC

′
∞

eηC
1/2
∞

[
2T

eψs
sinh

(
eψs

2T

)
− 1

]
. (4)

12. How does the diffusio-osmotic electric current scale in the limit of small and large surface charge?

13. What is the interest of using such nanotubes in a membrane to convert osmotic into electric energy?
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