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1 Charge distribution

1. The Debye length for an electrolyte containing several species with charge qi with concentration Ci is

λD =

√
kBTϵw∑

i q
2
iCi

. (1)

For a symmetric electrolyte there are two species with q+ = −q− = e and C+ = C− = C, hence

λD =

√
kBTϵw
2e2C

. (2)

With the given values, we get λD ≃ 3 nm. Since λD ≪ R, we can consider the wall of the nanotube as planar.

2. We consider charged species with charge qi and density Ci,∞ (far from any disturbance). Then at equilibrium
in a potential ψ(r) they adopt a Boltzmann distribution [3]

Ci(r) = Ci,∞ exp

(
−qiψ(r)

T

)
. (3)

In turn, these charges affect the potential through the Poisson equation:

ϵ∇2ψ(r) = −
∑
i

qiCi(r) = −
∑
i

qiCi,∞ exp

(
−qiψ(r)

T

)
. (4)

In a symmetric binary electrolyte where q+ = −q− = e and C+,∞ = C−,∞ = C∞, it takes the form

ϵ∇2ψ(r) = 2eC∞ sinh

(
eψ(r)

T

)
. (5)

Introducing the rescaled potential Ψ(r) = eψ(r)/T and using the Debye length (2), the equation reads

λ2D∇2Ψ(r) = sinh(Ψ(r)). (6)

We can even use the Debye length as our unit length, leading to

∇2Ψ(r) = sinh(Ψ(r)). (7)

We now solve Eq. (7) at an infinite plane located at z = 0:

Ψ′′(z) = sinh(Ψ(z)). (8)

The solution to this equation is (App. A), reintroducing the Debye length:

tanh

(
Ψ(z)

4

)
= tanh

(
Ψ(0)

4

)
exp

(
− z

λD

)
. (9)
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3. To relate the surface potential ψs = ψ(0) to the surface charge Σ, we use the fact that the surface charge should
be completely screened by counter-ions, hence

Σ = −e
∫ ∞

0

[C+(z)− C−(z)]dz = ϵ

∫ ∞

0

∂2zψ(z)dz = −ϵ∂zψ(0) =
2ϵT

eλD
sinh

(
eψs

2T

)
. (10)

4. Assuming that the system is globally neutral,
∑

i qiCi,∞ = 0, if the rescaled potential is small we can make the
Debye-Hückel approximation: we linearize the exponentials in Eq. (4) to get

ϵ∇2ψ(r) =
∑
i

q2iCi,∞

T
ψ(r). (11)

With the Debye length (1), it reads
λ2D∇2ψ(r) = ψ(r). (12)

This is the Debye-Hückel equation.
At a planar wall, the solution of the Debye-Hückel equation (12) is

ψ(z) = ψ(0) exp

(
− z

λD

)
, (13)

which coincides with the expansion of Eq. (9) for a symmetric electrolyte.
In this limit, the relation (10) between the surface charge and the surface potential is

Σ =
ϵψs

λD
. (14)

We use this expression to evaluate if the reduced potential at the surface is small:

eψs

T
=
eλDΣ

ϵT
≃ 170; (15)

this is not small, hence we cannot use the Debye-Hückel limit.

2 Flow

5. In the Stokes equation, there is no inertia so that the sum of the volumic forces should be zero. The first term
represents the viscosity, the second is the effect of pressure, and the third is the electrostatic force.

6. The incompressibility condition reads ∇ · v(r) = 0, or ∂xvx + ∂zvz = 0. Since ∂x ∼ 1/L while ∂z ∼ 1/λD,
vz ≪ vx.

7. For a simple salt, using the Boltzmann equation,∑
i

qiCi(r) = −2eC∞ sinh

(
eψ(r)

T

)
≃ −2e2C∞

T
ψ(r) (16)

to the lowest order in the potential. The Stokes equation then reads

0 = η∇2v(r)−∇p(r) + 2e2C∞

T
ψ(r)∇ψ(r). (17)

8. Projecting the Stokes equation along z, we get

∂zp =
2e2C∞

T
ψ∂zψ =

e2C∞

T
∂z

(
ψ2

)
. (18)

Integrating with limz→∞ p(x, z) = 0, we get

p(x, z) =
e2C∞(x)

T
ψ(x, z)2. (19)
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9. Projecting along x, we get

0 = η∂2zvx − ∂xp+
2e2

T
C∞(x)ψ∂xψ. (20)

Using the expression for the pressure, we arrive at

0 = η∂2zvx − e2

T
ψ(x, z)2∂xC∞(x). (21)

Using that ψ(x, z) = ψs exp(−z/λD) and a no slip boundary condition, we get after integration

vx(z) =
ϵC ′

∞ψ
2
s

8ηC∞

(
e−2z/λD − 1

)
. (22)

3 Electric current

10. As the electrolyte is neutral in the bulk (far from the plate), the flow does not generate any current. However,
since there is a concentration gradient in the bulk, there is a diffusive flux of ions. If the cations and anions do not
have the same diffusion coefficient, this flux induces an electric current.

11. We define the electric current by an integration on z:

IDO = 2πR

∫ ∞

0

e(C+ − C−)vxdz = −2πR× 2e2C∞

T

∫ ∞

0

ψ(z)vx(z)dz. (23)

Using the expressions above, we get

IDO = 2πR× ϵ3/2eC ′
∞

6
√
2ηT 1/2C

1/2
∞

ψ3
s = 2πR× TC ′

∞
24ηe2C2

∞
Σ3. (24)

12. If eψs/T ≫ 1, then using the surface charge (Eq. (10)), we can write the current as

I =
2πR

L

ϵT 2Σ

ηe2
∆ log(C∞). (25)

On the other hand, if eψs/T ≪ 1, the current is proportional to ψ3
s ∝ Σ3: it decays very fast for weak surface

charges.

13. The density of nanotubes in the membrane is proportional to 1/R2, hence the current per unit area is propor-
tional to 1/R: the thinner the nanotubes, the higher the current.

A Solution of the Poisson-Boltzmann equation at a plane
Here we solve

v′′(z) = sinh(v(z)). (26)

We assume that the potential is positive at z = 0 and decreases to 0 at infinity.
Multiplying by v′ and integrating we get

v′2

2
= cosh(v)− 1, (27)

where the integration constant has been chosen so that v → 0 and v′ → 0 as z → ∞. Now we use

cosh(v)− 1 = 2 sinh
(v
2

)2

. (28)

Taking the square root and assuming that v′ < 0, we have

v′ = −2 sinh
(v
2

)
= −4 sinh

(v
4

)
cosh

(v
4

)
. (29)
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Dividing both sides by cosh(v/4)2, and using that tanh′ = 1/ cosh2, we get

tanh
(v
4

)′
= − tanh

(v
4

)
, (30)

from which we deduce
tanh

(
v(z)

4

)
= tanh

(
v(0)

4

)
exp(−z). (31)

B Exact solution for the flow and the diffusio-osmosis current
In this appendix we give the exact solutions (without the Debye-Hückel approximation) of sections 2 and 3.

B.1 Flow
The Stokes equation is

0 = η∇2v(r)−∇p(r) + 2eC∞ sinh

(
eψ(r)

T

)
∇ψ(r). (32)

Projecting the Stokes equation along z, we get

∂zp = 2eC∞ sinh

(
eψ

T

)
∂zψ =

e2C∞

T
∂z

(
ψ2

)
. (33)

Integrating, we get

p(x, z)− p∞(x) = 2TC∞(x)

[
cosh

(
eψ(x, z)

T

)
− 1

]
. (34)

Projecting along x, we get

0 = η∂2zvx − ∂xp+ 2TC∞(x) sinh

(
eψ(r)

T

)
∂xψ. (35)

Using the expression for the pressure, we arrive at

0 = η∂2zvx − ∂xp∞ − 2T∂xC∞(x)

[
cosh

(
eψ(x, z)

T

)
− 1

]
. (36)

Taking the limit z → ∞, we see that ∂xp∞ should vanish, hence

η∂2zvx = 2TC ′
∞

[
cosh

(
eψ(x, z)

T

)
− 1

]
. (37)

In order to compute vx(z) from Eq. (37), we use the solution (9) for the potential. First, we use

cosh

(
eV

T

)
− 1 = 8 cosh

(
eV

4T

)2

sinh

(
eV

4T

)2

=
8γ2e−2z/λD(

1− γ2e−2z/λD
)2 = −∂2z

[
2λ2D log

(
1− γ2e−2z/λD

)]
, (38)

where we have used that cosh2 sinh2 = tanh2 /
(
1− tanh2

)2
and defined

γ = tanh

(
eVs
4T

)
, (39)

where Vs is the surface potential. Using this relation in Eq. (37) and integrating with a no slip boundary condition,
we get

vx(x, z) =
4TC ′

∞λ
2
D

η

[
log

(
1− γ2

)
− log

(
1− γ2e−2z/λD

)]
(40)

With the expression of the Debye length,

vx(x, z) =
2T 2ϵ

ηe2
log(C∞)′

[
log

(
1− γ2

)
− log

(
1− γ2e−2z/λD

)]
(41)

Far from the surface,

vx(x,∞) =
2T 2ϵ

ηe2
log(C∞)′ log

(
1− γ2

)
. (42)
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B.2 Diffusio-osmosis current
We define the electric current by an integration on z:

I =

∫ ∞

0

e(C+ − C−)vxdz. (43)

We then use C+ − C− = −2C∞ sinh(eV/T ), with

sinh

(
eV

T

)
= 4 sinh

(
eV

4T

)
cosh

(
eV

4T

)[
2 cosh

(
eV

4T

)2

− 1

]
=

4γe−z/λD
(
1 + γ2e−2z/λD

)(
1− γ2e−2z/λD

)2 , (44)

where we have used the solution (9). Using now the velocity profile (40), we arrive at

I = −32
eTC∞C

′
∞λ

2
D

η

∫ ∞

0

dz
γe−z/λD

(
1 + γ2e−2z/λD

)(
1− γ2e−2z/λD

)2 log

(
1− γ2

1− γ2e−2z/λD

)
(45)

= −32
eTC∞C

′
∞λ

3
D

η

∫ γ

0

dq
1 + q2

(1− q2)
2 log

(
1− γ2

1− q2

)
. (46)

Mathematica gives for the integral∫ γ

0

dq
1 + q2

(1− q2)
2 log

(
1− γ2

1− q2

)
= tanh−1(γ)− γ

1− γ2
=
eVs
4T

[
1− 2T

eVs
sinh

(
eVs
2T

)]
. (47)

Finally, the current in a nanotube with radius R is given by

I = 2πR× 8
e2C∞C

′
∞Vsλ

3
D

η

[
2T

eVs
sinh

(
eVs
2T

)
− 1

]
. (48)
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