ICFP - Soft Matter

Onsager theory of the isotropic-nematic transition - Solution

Anke Lindner, Vincent Démery

1 Free energy for the orientations

1. With the Mayer functions, the integrand is zero of two cylinders overlap and one otherwise: the integral counts the allowed configurations.
2. In the plane of the two orientations, the forbidden area is, at the leading order in d / ℓ, a parallelogram with area $\ell^{2}\left|\boldsymbol{n}_{i} \times \boldsymbol{n}_{j}\right|$. Taking into account the direction perpendicular to this plane, we see that the forbidden area has a thickness $2 d$, hence

$$
\begin{equation*}
v\left(\boldsymbol{n}_{i}, \boldsymbol{n}_{j}\right)=2 d \ell^{2}\left|\boldsymbol{n}_{i} \times \boldsymbol{n}_{j}\right| . \tag{1}
\end{equation*}
$$

3. At order 1 in Φ, the partition function is

$$
\begin{align*}
Z & =\frac{1}{N!} \int \prod_{i} \mathrm{~d} \boldsymbol{x}_{i} \mathrm{~d} \boldsymbol{n}_{i} \prod_{i<j}\left[1+\Phi\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}, \boldsymbol{n}_{i}, \boldsymbol{n}_{j}\right)\right] \tag{2}\\
& \simeq \frac{1}{N!} \int \prod_{i} \mathrm{~d} \boldsymbol{x}_{i} \mathrm{~d} \boldsymbol{n}_{i}\left[1+\sum_{i<j} \Phi\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}, \boldsymbol{n}_{i}, \boldsymbol{n}_{j}\right)\right] \tag{3}\\
& =\frac{V^{N}}{N!} \int \prod_{i} \mathrm{~d} \boldsymbol{n}_{i}\left[1-\frac{v\left(\boldsymbol{n}_{i}, \boldsymbol{n}_{j}\right)}{V}\right] . \tag{4}
\end{align*}
$$

The free energy for the orientations $\left(\boldsymbol{n}_{i}\right)$ is thus

$$
\begin{align*}
F\left(\left(\boldsymbol{n}_{i}\right)\right) & =-T \log \left[\frac{V^{N}}{N!}\left(1-\frac{1}{V} \sum_{\langle i j\rangle} v\left(\boldsymbol{n}_{i}, \boldsymbol{n}_{j}\right)\right)\right] \tag{5}\\
& \simeq-T N \log (\rho)+\frac{T}{V} \sum_{\langle i j\rangle} v\left(\boldsymbol{n}_{i}, \boldsymbol{n}_{j}\right) . \tag{6}
\end{align*}
$$

The free energy thus describes a system of N orientations interacting through the pair potential (1).
4. The free energy of the density of orientations $\hat{\psi}(\boldsymbol{n})$ is (discarding the orientation-independent term):

$$
\begin{equation*}
\frac{F[\hat{\psi}]}{T}=\int \hat{\psi}(\boldsymbol{n}) \log (\hat{\psi}(\boldsymbol{n})) \mathrm{d} \boldsymbol{n}+\frac{1}{2 V} \int v\left(\boldsymbol{n}, \boldsymbol{n}^{\prime}\right) \hat{\psi}(\boldsymbol{n}) \hat{\psi}\left(\boldsymbol{n}^{\prime}\right) \mathrm{d} \boldsymbol{n} \mathrm{~d} \boldsymbol{n}^{\prime} . \tag{7}
\end{equation*}
$$

The free energy per particle $f=F / N$ of the distribution $\psi=\hat{\psi} / N$ is

$$
\begin{equation*}
\frac{f[\psi]}{T}=\int \psi(\boldsymbol{n}) \log (\psi(\boldsymbol{n})) \mathrm{d} \boldsymbol{n}+\bar{\rho} d \ell^{2} \int\left|\boldsymbol{n} \times \boldsymbol{n}^{\prime}\right| \psi(\boldsymbol{n}) \psi\left(\boldsymbol{n}^{\prime}\right) \mathrm{d} \boldsymbol{n} \mathrm{~d} \boldsymbol{n}^{\prime} \tag{8}
\end{equation*}
$$

where we have omitted a constant term. It is of the form

$$
\begin{equation*}
\frac{f[\psi]}{T}=\sigma[\psi]+\frac{A}{2} \rho[\psi], \tag{9}
\end{equation*}
$$

with

$$
\begin{align*}
\sigma[\psi] & =\int \psi(\boldsymbol{n}) \log (\psi(\boldsymbol{n})) \mathrm{d} \boldsymbol{n} \tag{10}\\
\rho[\psi] & =\int\left|\boldsymbol{n} \times \boldsymbol{n}^{\prime}\right| \psi(\boldsymbol{n}) \psi\left(\boldsymbol{n}^{\prime}\right) \mathrm{d} \boldsymbol{n} \mathrm{~d} \boldsymbol{n}^{\prime} \tag{11}\\
A & =2 \bar{\rho} d \ell^{2} . \tag{12}
\end{align*}
$$

5. The volume fraction is given by $\phi=\bar{\rho} \times \pi d^{2} \ell / 4 \ll A$: the coupling constant is much larger than the volume fraction, the ratio scales as d / ℓ. There may be a transition for A of order 1 , hence for very low volume fractions.

2 Phase transition

6. For the entropic term,

$$
\begin{align*}
\sigma[\psi] & =\int \frac{1}{4 \pi}\left(1+\boldsymbol{n}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{n}\right) \log \left(1+\boldsymbol{n}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{n}\right) \mathrm{d} \boldsymbol{n} \tag{13}\\
& =\frac{1}{4 \pi} \int\left[\boldsymbol{n}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{n}+\frac{1}{2}\left(\boldsymbol{n}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{n}\right)^{2}-\frac{1}{6}\left(\boldsymbol{n}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{n}\right)^{3}+\frac{1}{24}\left(\boldsymbol{n}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{n}\right)^{4}\right] \mathrm{d} \boldsymbol{n} \tag{14}
\end{align*}
$$

We now use

$$
\begin{equation*}
\int\left(\boldsymbol{n}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{n}\right)^{k} \mathrm{~d} \boldsymbol{n}=4 \pi q^{k} \int_{0}^{1}\left(u^{2}-\frac{1}{3}\right)^{k} \mathrm{~d} u \tag{15}
\end{equation*}
$$

With $\int_{0}^{1}\left(u^{2}-\frac{1}{3}\right)^{2} \mathrm{~d} u=4 / 45, \int_{0}^{1}\left(u^{2}-\frac{1}{3}\right)^{3} \mathrm{~d} u=16 / 945$ and $\int_{0}^{1}\left(u^{2}-\frac{1}{3}\right)^{4} \mathrm{~d} u=16 / 945$, we arrive at

$$
\begin{equation*}
\sigma[\psi]=\int \psi(\boldsymbol{n}) \log (\psi(\boldsymbol{n})) \mathrm{d} \boldsymbol{n}=\alpha_{2} q^{2}+\alpha_{3} q^{3}+\alpha_{4} q^{4}+\mathcal{O}\left(q^{5}\right) \tag{16}
\end{equation*}
$$

with $\alpha_{2}=2 / 45, \alpha_{3}=-8 / 2835$ and $\alpha_{4}=4 / 2835$.
7. The free energy term is

$$
\begin{equation*}
\rho[\psi]=\int\left|\boldsymbol{n} \times \boldsymbol{n}^{\prime}\right| \psi(\boldsymbol{n}) \psi\left(\boldsymbol{n}^{\prime}\right) \mathrm{d} \boldsymbol{n} \mathrm{~d} \boldsymbol{n}^{\prime}=\frac{1}{(4 \pi)^{2}} \int\left|\boldsymbol{n} \times \boldsymbol{n}^{\prime}\right|\left(1+q\left[(\boldsymbol{a} \cdot \boldsymbol{n})^{2}-\frac{1}{3}\right]\right)\left(1+q\left[\left(\boldsymbol{a} \cdot \boldsymbol{n}^{\prime}\right)^{2}-\frac{1}{3}\right]\right) \mathrm{d} \boldsymbol{n} \mathrm{~d} \boldsymbol{n}^{\prime} \tag{17}
\end{equation*}
$$

it contains a constant term and q and q^{2} terms. The constant term does not play a role in the analysis.
The terms of order q vanish: the integral

$$
\begin{equation*}
\frac{1}{(4 \pi)^{2}} \int\left|\boldsymbol{n} \times \boldsymbol{n}^{\prime}\right|\left[(\boldsymbol{a} \cdot \boldsymbol{n})^{2}-\frac{1}{3}\right] \mathrm{d} \boldsymbol{n} \mathrm{~d} \boldsymbol{n}^{\prime} \tag{18}
\end{equation*}
$$

can be integrated over \boldsymbol{n}^{\prime} first, which reduces the $\left|\boldsymbol{n} \times \boldsymbol{n}^{\prime}\right|$ term to a constant, and then the weight $(\boldsymbol{a} \cdot \boldsymbol{n})^{2}-\frac{1}{3}$ integrates to zero.

The interaction energy $v\left(\boldsymbol{n}, \boldsymbol{n}^{\prime}\right)$ is lower if the orientations are aligned. Hence the energetic term $\rho[\psi]$ should be lower if the distribution is more polarized, meaning that q is larger. We thus expect the q^{2} to have a negative prefactor, that we denote $-r$.
8. The q independent term is

$$
\begin{equation*}
\frac{1}{(4 \pi)^{2}} \int\left|\boldsymbol{n} \times \boldsymbol{n}^{\prime}\right| \mathrm{d} \boldsymbol{n} \mathrm{~d} \boldsymbol{n}^{\prime}=\frac{\pi}{4} \tag{19}
\end{equation*}
$$

The term of order q^{2} can be calculated by using the vector \boldsymbol{n} as a reference in polar coordinates for the vector n^{\prime} :

$$
\begin{align*}
\int\left|\boldsymbol{n} \times \boldsymbol{n}^{\prime}\right|\left[\left(\boldsymbol{a} \cdot \boldsymbol{n}^{\prime}\right)^{2}-\frac{1}{3}\right] \mathrm{d} \boldsymbol{n}^{\prime} & =\int_{0}^{\pi} \mathrm{d} \theta \int_{0}^{2 \pi} \mathrm{~d} \phi \sin (\theta)^{2}\left(\left[\cos (\theta) \cos \left(\theta_{a}\right)+\sin (\theta) \sin \left(\theta_{a}\right) \cos (\phi)\right]^{2}-\frac{1}{3}\right) \tag{20}\\
& =-\frac{\pi^{2}}{8}\left[\cos \left(\theta_{a}\right)^{2}-\frac{1}{3}\right] \tag{21}
\end{align*}
$$

where θ_{a} is the angle between \boldsymbol{n} and \boldsymbol{a} and ϕ is the azimuthal angle between \boldsymbol{a} and \boldsymbol{n}^{\prime}. Then, integrating over \boldsymbol{n} amounts to integrate over θ_{a} with a weight $2 \pi \sin \left(\theta_{a}\right)$:

$$
\begin{align*}
\frac{1}{(4 \pi)^{2}} \int\left|\boldsymbol{n} \times \boldsymbol{n}^{\prime}\right|\left[\left(\boldsymbol{a} \cdot \boldsymbol{n}^{\prime}\right)^{2}-\frac{1}{3}\right]\left[(\boldsymbol{a} \cdot \boldsymbol{n})^{2}-\frac{1}{3}\right] \mathrm{d} \boldsymbol{n}^{\prime} \mathrm{d} \boldsymbol{n} & =-\frac{1}{(4 \pi)^{2}} \int_{0}^{\pi} 2 \pi \sin \left(\theta_{a}\right) \frac{\pi^{2}}{8}\left[\cos \left(\theta_{a}\right)^{2}-\frac{1}{3}\right]^{2} \tag{22}\\
& =-\frac{\pi}{32} \int_{0}^{1}\left(u^{2}-\frac{1}{3}\right)^{2} \mathrm{~d} u \tag{23}\\
& =-\frac{\pi}{360} \tag{24}
\end{align*}
$$

Finally,

$$
\begin{equation*}
\rho[\psi]=\frac{\pi}{4}-\frac{\pi}{360} q^{2} \tag{25}
\end{equation*}
$$

9. The isotropic state $q=0$ is stable when the q^{2} term is positive, which is the case for

$$
\begin{equation*}
\alpha_{2}=\frac{2}{45}>\frac{A r}{2}=\frac{\pi}{360} \bar{\rho} d \ell^{2} \tag{26}
\end{equation*}
$$

leading to

$$
\begin{equation*}
\left(\bar{\rho} d \ell^{2}\right)<\left(\bar{\rho} d \ell^{2}\right)^{*}=\frac{16}{\pi} \tag{27}
\end{equation*}
$$

At the transition, as $\alpha_{3}<0$, the order parameter jumps to

$$
\begin{equation*}
q^{*}=-\frac{3 \alpha_{3}}{4 \alpha_{4}}=\frac{3}{2}: \tag{28}
\end{equation*}
$$

the transition is discontinuous.

