ICFP – Soft Matter

Elasticity of a polymer gel – Solution

Anke Lindner, Vincent Démery

1 Elasticity of a single chain

1. The probability $\psi_0(\mathbf{r}, N)$ is proportional to a number of configurations. The associated free energy is thus

$$A_c(\mathbf{r}) = -kT \log(\psi_0(\mathbf{r})) = \frac{3kTr^2}{2Nb^2},\tag{1}$$

where we have discarded a r independent term. The restoring force f is thus given by

$$f = -\nabla A_c(\mathbf{r}) = -\frac{3kT\mathbf{r}}{Nh^2}.$$
 (2)

2 Elasticity of a gel

2. The average free energy of a chain (or partial chain) with length L is $\int d\mathbf{r} \psi_0(\mathbf{r}, N) A_c(\mathbf{r}, N)$. Taking into account the distribution of lengths $\phi_0(N)$, we arrive at

$$A = n_c \int_0^\infty dN \phi_0(N) \int d\mathbf{r} \psi_0(\mathbf{r}, N) A_c(\mathbf{r}, N),$$
(3)

where we can add a term that does not depend on the stretching of the chains, $A_0(V,T)$.

3. The free energy becomes

$$A' = n_c \int_0^\infty dN \phi_0(N) \int d\mathbf{r} \psi_0(\mathbf{r}, N) A_c(\mathbf{E} \cdot \mathbf{r}, N) + A_0(V', T).$$
(4)

4. Using the expression of the free energy of a chain, Eq. (1), we compute

$$\int d\mathbf{r} \psi_0(\mathbf{r}, N) A_c(\mathbf{E} \cdot \mathbf{r}, N) = \frac{3kT}{2Nb^2} \int d\mathbf{r} \psi_0(\mathbf{r}, N) (E \cdot \mathbf{r})^2$$
(5)

$$= \frac{3kT}{2Nb^2} E_{\mu\nu} E_{\mu\sigma} \int d\mathbf{r} \psi_0(\mathbf{r}, N) r_{\nu} r_{\sigma}$$
 (6)

$$= \frac{3kT}{2Nb^2} E_{\mu\nu} E_{\mu\sigma} \times \frac{Nb^2}{3} \delta_{\nu\sigma} \tag{7}$$

$$=\frac{kT}{2}E_{\mu\nu}E_{\mu\nu}.\tag{8}$$

The total energy is thus

$$A' = \frac{kTn_c}{2}E_{\mu\nu}E_{\mu\nu} + A_0(V', T). \tag{9}$$

5. The volume change δV is given by

$$\frac{\delta V}{V} = \frac{\det(\boldsymbol{E} + \delta \boldsymbol{E})}{\det(\boldsymbol{E})} = \det(1 + \epsilon) \simeq \operatorname{Tr}(\epsilon).$$
(10)

6. The free energy change is

$$\delta A = kT n_c E_{\mu\nu} \delta E_{\mu\nu} + \frac{\partial A_0}{\partial V} \delta V. \tag{11}$$

Using $\delta E_{\mu\nu} = \epsilon_{\mu\sigma} E_{\sigma\nu}$ and the previous expression for the volume change,

$$\delta A = kT n_c E_{\mu\nu} \epsilon_{\mu\sigma} E_{\sigma\nu} + \frac{\partial A_0}{\partial V} V \epsilon_{\mu\mu}. \tag{12}$$

7. Upon a deformation ϵ , the change in free energy allows to identify the stress σ with

$$\delta A = V \sigma_{\mu\nu} \epsilon_{\mu\nu},\tag{13}$$

hence here

$$\sigma_{\mu\nu} = kT\nu_c E_{\mu\sigma} E_{\nu\sigma} - P\delta_{\mu\nu},\tag{14}$$

with $\nu_c = n_c/V$ the density of chains.

8. We deformation gradient tensor

$$\mathbf{E} = \begin{pmatrix} \lambda^{-1/2} & 0 & 0 \\ 0 & \lambda^{-1/2} & 0 \\ 0 & 0 & \lambda \end{pmatrix}. \tag{15}$$

We check that $det(\mathbf{E}) = 1$, ensuring the conservation of volume.

9. From the equations above the stress is given by

$$\sigma = kT\nu_c \begin{pmatrix} \lambda^{-1} & 0 & 0\\ 0 & \lambda^{-1} & 0\\ 0 & 0 & \lambda^2 \end{pmatrix} - P\mathbf{1}.$$
 (16)

Since the stress should be zero on the sides, $P = kT\nu_c/\lambda$, hence

$$\sigma_{zz} = kT\nu_c \left(\lambda^2 - \frac{1}{\lambda}\right). \tag{17}$$

10. The finite extensibility of the chains is not taken into account in the above theory. This can be traced back to the elasticity of a single chain, where any extension is allowed.

3 Freely jointed chain

11. In the freely jointed chain

$$\mathbf{R}_N = b \sum_{i=1}^N \mathbf{n}_i. \tag{18}$$

The partition function Z under a force f is given by

$$Z = \int \prod_{i} d\mathbf{n}_{i} \exp\left(\frac{\mathbf{f} \cdot \mathbf{R}_{N}}{kT}\right) = z_{1}^{N}, \tag{19}$$

where

$$z_1 = \int d\mathbf{n} \exp\left(\frac{b\mathbf{f} \cdot \mathbf{n}}{kT}\right) = \frac{4\pi \sinh(\lambda)}{\lambda},\tag{20}$$

with

$$\lambda = \frac{bf}{kT}. (21)$$

12. The average orientation of a bond can be obtained with

$$\langle \boldsymbol{n} \rangle = \frac{1}{z_1} \int d\boldsymbol{n} \boldsymbol{n} \exp\left(\lambda \hat{\boldsymbol{f}} \cdot \boldsymbol{n}\right) = \hat{\boldsymbol{f}} \frac{\partial \log(z_1)}{\partial \lambda} = \hat{\boldsymbol{f}} \left[\coth(\lambda) - \frac{1}{\lambda} \right].$$
 (22)

The average position of the end monomer is thus

$$\langle \mathbf{R}_N \rangle = Nb\hat{\mathbf{f}} \left[\coth(\lambda) - \frac{1}{\lambda} \right].$$
 (23)

At small λ , we can use the Taylor expansion $\coth(\lambda) = \frac{1}{\lambda} + \frac{\lambda}{3} + \mathcal{O}(\lambda^3)$. In this limit

$$\langle \mathbf{R}_N \rangle = \frac{Nb^2}{3kT} \mathbf{f} : \tag{24}$$

we recover the behavior of the Rouse model. At large λ , $\coth(\lambda) \to 1$ so that

$$\langle \mathbf{R}_N \rangle \to N b \hat{\mathbf{f}}.$$
 (25)

13. The partition function of the polymer chain gives access to its free energy,

$$A(\mathbf{r}, \mathbf{f}) = -kTN \log \left(\frac{\sinh(\lambda)}{\lambda} \right) = A_0(\mathbf{r}) - \mathbf{r} \cdot \mathbf{f}, \tag{26}$$

where $A_0(\mathbf{r})$ is the entropy of a single chain. The difficulty in getting the expression for $A_0(\mathbf{r})$ is to invert the relation between $\mathbf{r} = \langle \mathbf{R}_N \rangle$ and λ . Once A_0 is known it can be used in Kuhn's gel theory.

References

[1] Masao Doi. Introduction to polymer physics. Oxford university press, 1996.